Abstract:
A microgrid system includes one or more power generators configured to provide electrical energy. The microgrid system also includes a localized distribution network coupled to the one or more power generators, coupled to the one or more loads, and coupled to an external grid. The microgrid system further includes a microgrid controller configured to predict microgrid demand for the one or more loads for a predetermined period of time. The microgrid controller is also configured to receive demand information for the external grid for the predetermined period of time. The microgrid controller is further configured to determine an operation plan for the one or more power generators based on the predicted microgrid demand and the received demand information. Moreover, the microgrid controller is configured to determine a schedule to transmit electrical energy to the external grid based on the operation plan.
Abstract:
Systems and methods of controlling a dispatch operation of an energy storage system are provided. In particular, a degradation value of a present dispatch state of an energy storage system can be determined. The present dispatch state can specify one or more energy storage units presently coupled to the system. The degradation value can be determined based at least in part on one or more operating parameters, such as temperature, open circuit voltage, charge or discharge current, and/or contactor life. The degradation value can then be compared against one or more degradation values associated with one or more candidate dispatch states. A dispatch state can then be selected based on the comparison. One or more energy storage units can be selectively coupled to the energy storage system based at least in part on the selected dispatch state.
Abstract:
A method implemented by at least one processor includes receiving a plurality of operating parameters of a pumping system, wherein the pumping system has a plurality of pump-units powered by a generator-unit. The operating parameters include a pump-unit parameter and a generator-unit parameter. The method also includes receiving reference data of the pumping system, wherein the reference data includes measurements from the pumping system representative of performance of the plurality of pump-units. The method also includes determining one or more health parameters corresponding to one or more pump-units based on the plurality of operating parameters and the reference data. The method further includes modifying one or more input parameters of the generator-unit based on the one or more health parameters for continued operation of the pumping system.
Abstract:
A yaw backup system is provided. The yaw backup system includes an energy storage medium for storing auxiliary power. The yaw backup system also includes a yaw controller for coordinating delivery of power from the energy storage medium to a yaw motor for controlling a yaw angle of a wind turbine during grid loss conditions. The yaw controller executes the steps of receiving wind direction signals over time from a sensor, altering a tolerance level of a wind turbine based on changes in the wind direction signals over time and controlling delivery of power to the yaw motor from the auxiliary power of the energy storage medium based on the tolerance level to control the yaw angle for reducing a load on the wind turbine induced by wind.
Abstract:
In accordance with one aspect of the present technique, a method is disclosed. The method includes identifying a first change in an excitation direction of a group of cells and determining a first set of characteristics of the group of cells corresponding to the first change. The method also includes identifying a second change in the excitation direction of the group of cells and determining a second set of characteristics of the group of cells corresponding to the second change. The second change in the excitation direction is opposite to the first change in the excitation direction. The method further includes determining a number of functional cells from the group of cells based on the first and the second set of characteristics.
Abstract:
Controlling an energy storage system includes providing one or more constraints to an optimization problem algorithm, determining by the optimization problem algorithm a DC bus voltage value that results in an minimum total power dissipation for the plurality of power converters, calculating a respective control variable for each of the respective plurality of power converters based on the determined DC bus voltage value, and generating control processor executable instructions to implement control of each of the plurality of power converters to achieve the calculated respective control variable. A system for implementing the method and a non-transitory computer-readable medium are also disclosed.
Abstract:
Systems and methods for controlling a tap location associated with a string of an energy storage system are provided. In one embodiment, an energy storage system can include one or more strings. Each of the one or more strings can include a plurality of energy storage cells coupled in series. Each of the one or more strings can be associated with a selectively adjustable tap location to control the number of cells in the string that provide power to a power system. The energy storage system can further include a one or more control devices that can be configured to detect a change in a voltage associated with one or more of the one or more strings. The one or more control devices can be configured to adjust the tap location for at least one of the one or more strings in response to the change in the voltage.
Abstract:
A microgrid system includes one or more power generators configured to provide electrical energy. The microgrid system also includes a localized distribution network coupled to the one or more power generators, coupled to the one or more loads, and coupled to an external grid. The microgrid system further includes a microgrid controller configured to predict microgrid demand for the one or more loads for a predetermined period of time. The microgrid controller is also configured to receive demand information for the external grid for the predetermined period of time. The microgrid controller is further configured to determine an operation plan for the one or more power generators based on the predicted microgrid demand and the received demand information. Moreover, the microgrid controller is configured to determine a schedule to transmit electrical energy to the external grid based on the operation plan.
Abstract:
A method implemented by at least one processor includes receiving a pressure profile to be generated by a pumping system, wherein the pumping system includes at least one pump-unit powered by at least one generator-unit. The method also includes receiving a pump-unit parameter from at least one pump-unit and a generator-unit parameter from at least one generator unit. The pump-unit parameter is representative of an operating parameter of the pump-unit. The generator-unit parameter is representative of an operating parameter of the at least one generator-unit. The method includes generating an operating set-point corresponding to the at least one generator-unit based on the pump-unit parameter and the generator-unit parameter, wherein the operating set-point is one of at least one operating set-point corresponding to the at least one generator-unit. The method also includes determining an input parameter for the at least one generator-unit based on the at least one operating set-point.
Abstract:
A converter system includes a power converter including a first bridge circuit including at least one first switching device. The power converter also includes a second bridge circuit magnetically coupled to the first bridge circuit. The second bridge circuit includes at least one second switching device. The converter system also includes a plurality of first conductors of opposing polarities coupled to the first bridge circuit. The converter system further includes a plurality of second conductors of opposing polarities. At least one second conductor of the plurality of second conductors is coupled to the second bridge circuit. The converter system also includes a third conductor coupled to one first conductor of the plurality of first conductors and coupled to the second bridge circuit.