Abstract:
The present disclosure generally relates to semiconductor structures and, more particularly, to multi-finger devices in multiple-gate-contacted-pitch, integrated structures and methods of manufacture. The structure includes: a first plurality of fin structures formed on a substrate having a channel surface in a {110} plane; and a second plurality of fin structures formed on the substrate with a channel surface in a {100} plane, positioned in relation to the first plurality of fin structures.
Abstract:
A semiconductor device including semiconductor material having a bend and a trench feature formed at the bend, and a gate structure at least partially disposed in the trench feature. A method of fabricating a semiconductor structure including forming a semiconductor material with a trench feature over a layer, forming a gate structure at least partially in the trench feature, and bending the semiconductor material such that stress is induced in the semiconductor material in an inversion channel region of the gate structure.
Abstract:
One aspect of the disclosure relates to an integrated circuit structure. The integrated circuit structure may include a fin having a first source/drain region and a second source/drain, the first source/drain region being over a substrate and below a central region of the fin, and the second source/drain region being within a dielectric layer and over the central region of the fin; a gate structure within the dielectric layer substantially surrounding the central region of the fin between the first source/drain region and the second source drain region, wherein the fin includes at least one tapered region from the central region of the fin to at least one of the first source/drain region or the second source/drain region.
Abstract:
Disclosed are semiconductor structures comprising a field effect transistor (FET) having a low-resistance source/drain contact and, optionally, low gate-to-source/drain contact capacitance. The structures comprise a semiconductor body and, contained therein, first and second source/drain regions and a channel region. A first gate is adjacent to the semiconductor body at the channel region and a second, non-functioning, gate is adjacent to the semiconductor body such that the second source/drain region is between the first and second gates. First and second source/drain contacts are on the first and source/drain regions, respectively. The second source/drain contact is wider than the first and, thus, has a lower resistance. Additionally, spacing of the first and second source/drain contacts relative to the first gate can be such that the first gate-to-second source/drain contact capacitance is equal to or less than the first gate-to-first source/drain contact capacitance. Also disclosed are associated formation methods.
Abstract:
The present disclosure generally relates to semiconductor structures and, more particularly, to multi-finger devices in multiple-gate-contacted-pitch, integrated structures and methods of manufacture. The structure includes: a first plurality of fin structures formed on a substrate having a channel surface in a {110} plane; and a second plurality of fin structures formed on the substrate with a channel surface in a {100} plane, positioned in relation to the first plurality of fin structures.
Abstract:
A method of single-fin removal for quadruple density fins. A first double density pattern of first sidewall spacers is produced on a semiconductor substrate from first mandrels formed by a first mask using a minimum pitch. A second double density pattern of second sidewall spacers is produced on a layer disposed above the first double density pattern from second mandrels formed by a second mask with a the minimum pitch that is shifted relative to the first mask. A single sidewall spacer is removed from either the first or second double density pattern of first and second sidewall spacers. Sidewall image transfer processes allow the formation of quadruple density fins from which but a single fin is removed.
Abstract:
Devices and methods for a high voltage FinFET with a shaped drift region include a lateral diffusion metal oxide semiconductor (LDMOS) FinFET having a substrate with a top surface and a fin attached to the top surface. The fin includes a source region having a first type of doping, an undoped gate-control region adjacent the source region, a drift region adjacent the undoped gate-control region opposite the source region, and a drain region. The amount of doping of the source region is greater than the amount of doping in the drift region. The drain region is adjacent to the drift region and has the same type of doping. The fin is tapered in the drift region, being wider closest to the undoped gate-control region and thinner closest to the drain region. A gate stack is attached to the top surface of the substrate and located with the undoped gate-control region.
Abstract:
An integrated circuit having a reference device and method of forming the same. A reference device is disclosed having: a fully depleted n-type MOSFET implemented as a long channel device having a substantially undoped body; and a fully depleted p-type MOSFET implemented with as a long channel device having a substantially undoped body; wherein the n-type MOSFET and p-type MOSFET are connected in series and employ identical gate stacks, wherein each has a gate electrically coupled to a respective drain to form two diodes, and wherein both diodes are in one of an on state and an off state according to a value of an electrical potential applied across the n-type MOSFET and p-type MOSFET.
Abstract:
A method that forms a structure implants a well implant into a substrate, patterns a mask on the substrate (to have at least one opening that exposes a channel region of the substrate) and forms a conformal dielectric layer on the mask and to line the opening. The conformal dielectric layer covers the channel region of the substrate. The method also forms a conformal gate metal layer on the conformal dielectric layer, implants a compensating implant through the conformal gate metal layer and the conformal dielectric layer into the channel region of the substrate, and forms a gate conductor on the conformal gate metal layer. Additionally, the method removes the mask to leave a gate stack on the substrate, forms sidewall spacers on the gate stack, and then forms source/drain regions in the substrate partially below the sidewall spacers.
Abstract:
Various embodiments provide systems, computer program products and computer implemented methods. In some embodiments, a system includes a computer-implemented method of determining a laterally diffuse dopant profile in semiconductor structures by providing first and second semiconductor structures having plurality of gate array structures in a silicided region separated from each other by a first distance and second distance. A potential difference is applied across the plurality of gate array structures and resistances are determined. A linear-regression fit is performed on measured resistance versus the first distance and the second distance with an extrapolated x equals 0 and a y-intercept to determine a laterally diffused dopant-profile under the plurality of gate array structures based on a semiconductor device model.