Abstract:
An aspect of the disclosure provides for an asymmetric semiconductor device. The asymmetric semiconductor device may comprise: a substrate; and a fin-shaped field effect transistor (FINFET) disposed on the substrate, the FINFET including: a set of fins disposed proximate a gate; a first epitaxial region disposed on a source region on the set of fins, the first epitaxial region having a first height; and a second epitaxial region disposed on a drain region on the set of fins, the second epitaxial region having a second height, wherein the first height is distinct from the second height.
Abstract:
A method for fabricating enhanced-mobility pFET devices having channel lengths below 50 nm. Gates for pFETs may be patterned in dense arrays on a semiconductor substrate that includes shallow trench isolation (STI) structures. Partially-enclosed voids in the semiconductor substrate may be formed at source and drain regions for the gates, and subsequently filled with epitaxially-grown semiconductor that compressively stresses channel regions below the gates. Some of the gates (dummy gates) may extend over edges of the STI structures to prevent undesirable faceting of the epitaxial material in the source and drain regions.
Abstract:
An aspect of the disclosure provides for an asymmetric semiconductor device. The asymmetric semiconductor device may comprise: a substrate; and a fin-shaped field effect transistor (FINFET) disposed on the substrate, the FINFET including: a set of fins disposed proximate a gate; a first epitaxial region disposed on a source region on the set of fins, the first epitaxial region having a first height; and a second epitaxial region disposed on a drain region on the set of fins, the second epitaxial region having a second height, wherein the first height is distinct from the second height.
Abstract:
Device structures for a fin-type field-effect transistor (FinFET) and methods for fabricating a device structure for a FinFET. A fin comprised of a semiconductor material having a first crystal structure is formed. A dielectric layer is formed that includes an opening aligned with the fin. A dummy gate structure is removed from the opening in the dielectric layer. After the dummy gate structure is removed, a section of the fin aligned with the opening is implanted with non-dopant ions to amorphize the first crystal structure of the semiconductor material of the fin. After the section of the fin is implanted, the section of the fin is annealed such that the semiconductor material in the section of the fin recrystallizes with a second crystal structure incorporating internal strain.
Abstract:
Methods of fabricating integrated circuit devices for forming uniform and well controlled fin recesses are disclosed. One method includes, for instance: obtaining an intermediate semiconductor structure having a substrate, at least one fin disposed on the substrate, at least one gate structure positioned over the at least one fin, and at least one oxide layer disposed on the substrate and about the at least one fin and the at least one gate structure; implanting germanium (Ge) in a first region of the at least one fin; and removing the first region of the at least one fin implanted with Ge.
Abstract:
The present invention relates generally to semiconductor devices and more particularly, to a structure and method of forming a partially depleted semiconductor-on-insulator (SOI) junction isolation structure using a nonuniform trench shape formed by reactive ion etching (RIE) and crystallographic wet etching. The nonuniform trench shape may reduce back channel leakage by providing an effective channel directly below a gate stack having a width that is less than a width of an effective back channel directly above the isolation layer.
Abstract:
Fin-type transistor fabrication methods and structures are provided which include, for example, providing a gate structure extending at least partially over a fin extended above a substrate structure, the gate structure being disposed adjacent to at least one region of the fin; disposing a protective film conformally over the gate structure and over the at least one region; modifying the protective film over the at least one region of the fin to form a conformal buffer layer, wherein the modifying selectively alters a crystalline structure of the protective film over the at least one region which thereby becomes the conformal buffer layer, without altering the crystalline structure of the protective film disposed over the gate structure; and removing the un-altered protective film over the gate structure, leaving the conformal buffer layer over the at least one region to form a source region and a drain region of the fin-type transistor.
Abstract:
A semiconductor structure includes a fin upon a semiconductor substrate. A clean epitaxial growth surface is provided by forming a buffer layer upon fin sidewalls and an upper surface of the fin. The buffer layer may be epitaxially grown. Diamond shaped epitaxy is grown from the buffer layer sidewalls. In some implementations, the diamond shaped epitaxy may be subsequently merged with surrounding dielectric. A dopant concentration of the surrounding dielectric may be higher than a dopant concentration of the diamond shaped epitaxy.