Abstract:
The present disclosure provides in various aspects methods of forming a semiconductor device, methods for forming a semiconductor device structure, a semiconductor device and a semiconductor device structure. In some illustrative embodiments herein, a gate structure is formed over a non-planar surface portion of a semiconductor material provided on a surface of a substrate. A doped spacer-forming material is formed over the gate structure and the semiconductor material and dopants incorporated in the doped spacer-forming material are diffused into the semiconductor material close to a surface of the semiconductor material so as to form source/drain extension regions. The fabricated semiconductor devices may be multi-gate devices and, for example, comprise finFETs and/or wireFETs.
Abstract:
A method for the manufacture of a semiconductor device is provided, including the steps of providing a semiconductor substrate including a first area separated from a second area by a first isolation region, wherein the second area includes an intermediate transistor comprising a gate electrode, forming an oxide layer over the first and second areas, forming an optical planarization layer (OPL) over the oxide layer, forming a mask layer over the OPL in the first area without covering the OPL in the second area, and etching the OPL with the mask layer being present to expose the oxide layer over the gate electrode of the transistor.
Abstract:
A method for the manufacture of a semiconductor device is provided, including the steps of providing a semiconductor substrate including a first area separated from a second area by a first isolation region, wherein the second area includes an intermediate transistor comprising a gate electrode, forming an oxide layer over the first and second areas, forming an organic planarization layer (OPL) over the oxide layer, forming a mask layer over the OPL in the first area without covering the OPL in the second area, and etching the OPL with the mask layer being present to expose the oxide layer over the gate electrode of the transistor.
Abstract:
The present disclosure provides in various aspects methods of forming a semiconductor device, methods for forming a semiconductor device structure, a semiconductor device and a semiconductor device structure. In some illustrative embodiments herein, a gate structure is formed over a non-planar surface portion of a semiconductor material provided on a surface of a substrate. A doped spacer-forming material is formed over the gate structure and the semiconductor material and dopants incorporated in the doped spacer-forming material are diffused into the semiconductor material close to a surface of the semiconductor material so as to form source/drain extension regions. The fabricated semiconductor devices may be multi-gate devices and, for example, comprise finFETs and/or wireFETs.
Abstract:
A method for performing silicidation of gate electrodes includes providing a semiconductor device having first and second transistors with first and second gate electrodes formed on a semiconductor substrate, forming an oxide layer on the first and second gate electrodes and the semiconductor substrate, forming a cover layer on the oxide layer, and back etching the cover layer to expose portions of the oxide layer above the first and second gate electrodes while maintaining a portion of the cover layer between the first and second gate electrodes. Furthermore, the exposed portions of the oxide layer are removed from the first and second gate electrodes to expose upper portions of the first and second gate electrodes, while maintaining a portion of the oxide layer between the first and second gate electrodes, and a silicidation of the exposed upper portions of the first and second gate electrodes is performed.