Abstract:
A method of forming a transistor device is provided, including the subsequently performed steps of forming a gate electrode on a first semiconductor layer, forming an interlayer dielectric over the gate electrode and the first semiconductor layer, forming a first opening in the interlayer dielectric at a predetermined distance laterally spaced from the gate electrode on one side of the gate electrode and a second opening in the interlayer dielectric at a predetermined distance laterally spaced from the gate electrode on another side of the gate electrode, the first and second openings reaching to the first semiconductor layer, forming cavities in the first semiconductor layer through the first and second openings formed in the interlayer dielectric, and forming embedded second semiconductor layers in the cavities.
Abstract:
In a sophisticated semiconductor device, FINFET elements may be provided with individually accessible semiconductor fins which may be connected to a controllable interconnect structure for appropriately adjusting the transistor configuration, for instance with respect to current drive capability, replacing defective semiconductor fins and the like. Consequently, different transistor configurations may be obtained on the basis of a standard transistor cell architecture, which may result in increased production yield of highly complex manufacturing strategies in forming non-planar transistor devices.
Abstract:
When forming sophisticated P-channel transistors, a semiconductor alloy layer is formed on the surface of the semiconductor layer including the transistor active region. When a metal silicide layer is formed contiguous to this semiconductor alloy layer, an agglomeration of the metal silicide layer into isolated clusters is observed. In order to solve this problem, the present invention proposes a method and a semiconductor device wherein the portion of the semiconductor alloy layer lying on the source and drain regions of the transistor is removed before formation of the metal silicide layer is performed. In this manner, the metal silicide layer is formed so as to be contiguous to the semiconductor layer, and not to the semiconductor alloy layer.
Abstract:
Methods and apparatus are provided for an integrated circuit. The method includes forming a corrugation mask on a substrate, and forming a channel corrugation on the substrate. The corrugation mask is removed from the substrate, and a gate insulator is formed overlying the channel corrugation on the substrate. A gate is formed overlying the channel gate insulator.
Abstract:
A structure comprises a semiconductor substrate, a semiconductor-on-insulator region and a bulk region. The semiconductor-on-insulator region comprises a first semiconductor region, a dielectric layer provided between the semiconductor substrate and the first semiconductor region, and a first transistor comprising an active region provided in the first semiconductor region. The dielectric layer provides electrical isolation between the first semiconductor region and the semiconductor substrate. The bulk region comprises a second semiconductor region provided directly on the semiconductor substrate.
Abstract:
When forming cavities in active regions of semiconductor devices in order to incorporate a strain-inducing semiconductor material, an improved shape of the cavities may be achieved by using an amorphization process and a heat treatment so as to selectively modify the etch behavior of exposed portions of the active regions and to adjust the shape of the amorphous regions. In this manner, the basic configuration of the cavities may be adjusted with a high degree of flexibility. Consequently, the efficiency of the strain-inducing technique may be improved.
Abstract:
Methods of forming a semiconductor device structure at advanced technology nodes and respective semiconductor device structures are provided at advanced technology nodes, i.e., smaller than 100 nm. In some illustrative embodiments, a fluorine implantation process for implanting fluorine at least into a polysilicon layer formed over a dielectric layer structure is performed prior to patterning the gate dielectric layer structure and the polysilicon layer for forming a gate structure and implanting source and drain regions at opposing sides of the gate structure.
Abstract:
A known problem when manufacturing transistors is the stress undesirably introduced by the spacers into the transistor channel region. In order to solve this problem, the present invention proposes an ion implantation aimed at relaxing the stress of the spacer materials. The relax implantation is performed after the spacer has been completely formed. The relax implantation may be performed after a silicidation process or after an implantation step in the source and drain regions followed by an activation annealing and before performing the silicidation process.
Abstract:
Integrated circuits and methods for fabricating integrated circuits are provided. In an embodiment, an integrated circuit includes a first transistor structure that includes an etch-stop material layer, a first workfunction material layer disposed over the etch-stop material layer, a second workfunction material layer disposed over the first workfunction material layer, and a metal fill material disposed over the second workfunction material layer. The integrated circuit further includes a second transistor structure that includes a layer of the etch-stop material, a layer of the second workfunction material disposed over the etch-stop material layer, and a layer of the metal fill material disposed over the second workfunction material layer. Still further, the integrated circuit includes a resistor structure that includes a layer of the etch-stop material, a layer of the metal fill material disposed over the etch-stop material layer, and a silicon material layer disposed over the metal fill material layer.
Abstract:
A method includes providing a semiconductor structure including a substrate and a transistor element. A layer of a spacer material is deposited over the substrate and the gate structure, wherein the deposited layer of spacer material has an intrinsic stress. Ions are implanted into the layer of spacer material. After the deposition of the layer of spacer material and the implantation of ions into the layer of spacer material, a sidewall spacer is formed at sidewalls of the gate structure from the layer of spacer material.