Abstract:
A method may involve providing a conductive pattern on a bio-compatible layer. The conductive pattern may include a first conductive layer that comprises a first metal and a second conductive layer that comprises a second metal. The second conductive layer may be over the first conductive layer, and the first metal may be more malleable than the second metal. The method may also include mounting an electrical component to the conductive pattern to provide an electrochemical sensor. The electrochemical sensor may be configured for use in a body-mountable device.
Abstract:
An analyte sensor and method of making are provided. The analyte sensor includes a crosslinked, hydrophilic copolymer in contact with a surface of an electrode; and an analyte sensing component embedded within the crosslinked, hydrophilic copolymer, where the analyte sensing component is surrounded by a buffer having a predetermined buffering component and pH value and where the crosslinked, hydrophilic copolymer includes: backbone chains having first methacrylate-derived units, each having a first hydrophilic side chain; second methacrylate-derived units, each having a second hydrophilic side chain, where the first and second side chains are the same or different; third methacrylate-derived units; and hydrophilic crosslinks between third methacrylate-derived units in different backbone chains. The analyte sensor may be maintained at a humidity level of less than 25% to maintain its performance during storage.
Abstract:
A body-mountable pyruvate sensing device includes an electrochemical sensor embedded in a polymeric material configured for mounting to a surface of an eye. The electrochemical sensor includes a working electrode, a reference electrode, and a reagent localized near the working electrode that selectively reacts with pyruvate. Application of a voltage between the working electrode and the reference electrode causes a current related to a concentration of pyruvate in a fluid to which the electrochemical sensor is exposed; the current is measured by the body-mountable device and wirelessly communicated.
Abstract:
An analyte sensor for the continuous or semi-continuous monitoring of physiological parameters and a method for making the analyte sensor are disclosed. The analyte sensor includes a crosslinked copolymer network in contact with a surface of an electrode. The copolymer network has voids formed by the removal of a porogen, and an analyte sensing component is immobilized within the network. The method involves forming a solution of the precursors of the copolymer, depositing the mixture on a surface of an electrode, and curing the deposited mixture to provide the analyte sensor.
Abstract:
An eye-mountable device includes an electrochemical sensor embedded in a polymeric material configured for mounting to a surface of an eye. The electrochemical sensor includes a working electrode, a reference electrode, and a reagent that selectively reacts with an analyte to generate a sensor measurement related to a concentration of the analyte in a fluid to which the eye-mountable device is exposed. The working electrode can have a first side edge and a second side edge. The reference electrode can be situated such that at least a portion of the first and second side edges of the working electrode are adjacent respective sections of the reference electrode.
Abstract:
An eye-mountable device includes an electrochemical sensor embedded in a polymeric material configured for mounting to a surface of an eye. The electrochemical sensor includes a working electrode, a reference electrode, and a reagent that selectively reacts with an analyte to generate a sensor measurement related to a concentration of the analyte in a fluid to which the eye-mountable device is exposed. The working electrode can have at least one dimension less than 25 micrometers. The reference electrode can have an area at least five times greater than an area of the working electrode. A portion of the polymeric material can surround the working electrode and the reference electrode such that an electrical current conveyed between the working electrode and the reference electrode is passed through the at least partially surrounding portion of the transparent polymeric material.
Abstract:
A body-mountable device includes a flexible substrate configured for mounting to a skin surface. The device includes an input component configured to receive inputs from a user, e.g., finger presses, swipes, motions of the sensing platform, or gestures. Received inputs could include calibration data, for example, known values of a sensed property to compare with corresponding values obtained by a sensor of the device. The device can additionally include an output component configured to provide outputs to a user. Outputs could include indications of sensor readings, medical alerts, or operational states of the device. The flexible substrate of the device is configured to be adhered or otherwise mounted to the skin in a manner that minimally impacts activities of the body.
Abstract:
An eye-mountable device includes a flexible lens enclosure, anterior and posterior flexible conductive electrodes, and an accommodation actuator element. The flexible lens enclosure includes anterior and posterior layers that are sealed together. The anterior flexible conductive electrode is disposed within the flexible enclosure and across a center region of the flexible lens enclosure on a concave side of the anterior layer. The posterior flexible conductive electrode is disposed within the flexible enclosure and across the center region on a convex side of the posterior layer. The accommodation actuator element is disposed between the first and second flexible conductive electrodes. The anterior and posterior flexible conductive electrodes are transparent and electrically manipulate the accommodation actuator element.
Abstract:
A body-mountable retinal sensing device includes an electrochemical sensor embedded in a polymeric material configured for mounting to a body surface, such as a cornea. The electrochemical sensor includes a working electrode, a reference electrode, and a reagent localized near the working electrode that selectively reacts with retinal. Application of a voltage between the working electrode and the reference electrode causes a current related to a concentration of retinal in a fluid to which the electrochemical sensor is exposed. The current is measured by the body-mountable device and wirelessly communicated.
Abstract:
A method may involve forming a first electrode on a structure, where the first electrode defines an anode of a battery, and where the battery is configured to provide electrical power to a circuit located on the structure. The method may further involve forming a second electrode on the structure, where the second electrode defines a cathode of the battery, and where the second electrode is configured to reduce oxygen. And the method may involve embedding the structure in a polymer.