Abstract:
A high heat-resistive catalyser formed as a catalyst including a composite particle composed of a noble metal particle and a co-catalytic metal compound particle contacting, as a metal or as an oxide, with the noble metal particle, and a substrate carrying the noble metal particle and the co-catalytic metal compound particle, is produced by having a noble metal salt aqueous solution and a co-catalytic metal salt aqueous solution concurrently provided in a reverse micelle preparing reverse micellar solution containing a noble metal precursor and a co-catalytic metal precursor, and having a substrate carrying a composite particle comprising the noble metal precursor and the co-catalytic metal precursor concurrently reduced as a noble metal particle and a co-catalytic metal particle, respectively.
Abstract:
An electron emission element includes: a pair of electrodes facing each other with a predetermined gap therebetween; a conductive thin film which bridges across the electrodes and has a narrow region in which a part of at least one side of two sides of an area bridging across the electrodes is close to the other side; and an electron emission section formed in the narrow region of the conductive thin film. In here, the narrow region is narrower than the width between the electrodes in a direction orthogonal to a direction where the electrodes face each other.
Abstract:
A method of producing catalyst powder of the present invention has a step of precipitating a carrier in a reversed micelle, and a step of precipitating at least one of a noble metal particle and a transition metal particle in the reversed micelle in which the carrier is precipitated. By this method, it is possible to obtain catalyst powder excellent in heat resistance and high in the catalytic activity.
Abstract:
A method of producing catalyst powder of the present invention has a step of precipitating a transition metal particle and a base-metal compound in a reversed micelle substantially simultaneously, and a step of precipitating a noble metal particle in the reversed micelle. By this method, it is possible to obtain catalyst powder which restricts an aggregation of noble metal particles even at the high temperature and is excellent in the catalytic activity.
Abstract:
An exhaust gas purifying catalyst 1 has a composite compound 2 in which a metal selected from among Al, Ce, La, Zr, Co, Mn, Fe, Mg, Ba and Ti is uniformly dispersed on an oxide selected from among Al2O3, ZrO2 and CeO2, and a precious metal 4 selected from among Pt, Pd and Rh, supported on a compound 3 of the metal, and covered with the composite compound 2.
Abstract translation:废气净化催化剂1具有将选自Al,Ce,La,Zr,Co,Mn,Fe,Mg,Ba和Ti中的金属均匀地分散在选自Al 2 O 3,ZrO 2和 CeO 2和选自Pt,Pd和Rh的贵金属4,负载在金属的化合物3上,并被复合化合物2覆盖。
Abstract:
A catalyst which suppresses aggregation of metal particles and which has superior heat resistance. In the catalyst, metal particles are supported by a surface of a carrier while being partially embedded therein.
Abstract:
A method of producing catalyst powder of the present invention has a step of precipitating any one of a noble metal particle (5) and a transition metal particle (10) in a reversed micelle (1); a step of precipitating, in the reversed micelle (1) in which any one of the noble metal particle (5) and the transition metal particle (10) is precipitated, a porous support material (7) which supports the noble metal particle (5) and the transition metal particle (10); and a step of precipitating the other of the noble metal particle (5) and the transition metal particle (10) in the reversed micelle (1) in which any one of the noble metal particle (5) and the transition metal particle (10) is precipitated. By this method, it is possible to obtain catalyst powder capable of maintaining initial purification performance thereof even if being exposed to the high temperature.
Abstract:
A catalyst producing method comprises preparing reverse micellar solution including an aqueous solution containing at least a noble metal element as a catalytic active component, and carrying the catalytic active component by a substrate to establish them into a catalyst precursor; and spraying the emulsion solution containing the catalyst precursor in an inert gas atmosphere to obtain a dried catalyst precursor, and firing the obtained dried catalyst precursor in an air atmosphere. A catalyst is obtained by the catalyst producing method.
Abstract:
A semiconductor device includes a substrate, first insulating film carried on the substrate, first wiring layer carried on the first insulating film and an interlayer insulating film overlying the first wiring layer and first insulating film. The interlayer insulating film has a top portion overlying the first wiring layer and a pair of sidewall portions. The sidewall portions of the interlayer insulating film overlie the first insulating film and the sides of the first wiring layer. The sidewall portions have progressively increasing width in progressing towards the substrate. The device also includes a second wiring layer which extends from overlying part of the top portion of the interlayer insulating film to and in contact with an exposed portion of the substrate adjacent to the first insulating film.
Abstract:
A polysiloxane compound modified with two hydroxyl groups at the one end thereof and particularly suitable for improving the surface characteristics of resins prepared by polycondensation of a polyol with another polyfunctional compound, and a silicone-modified polyurethane having superior characteristics such as low frictional properties, water repellency, oil repellency, thrombosis resistance, etc. and also a process for producing the polyurethane are provided, which polysiloxane compound expressed by the formula ##STR1## wherein R represents H, Me (methyl) or Et (ethyl) and n represents an integer of 0 to 4,000, and which silicone-modified polyurethane is obtained from a compound having at least two isocyanate groups and a compound having at least two hydroxyl groups, and by using as a part of the compound having at least two hydroxyl groups, the polysiloxane compound of the above formula (I) in the urethane bond-forming reaction.