摘要:
A field emission-type electron source (10) is provided with a conductive substrate (1), a semiconductor layer formed on a surface of the conductive substrate (1), at least a part of the semiconductor layer being made porous, and a conductive thin film (7) formed on the semiconductor layer. Electrons injected into the conductive substrate (1) are emitted from the conductive thin film (7) through the semiconductor layer by applying a voltage between the conductive thin film (7) and the conductive substrate (1) in such a manner that the conductive thin film (7) acts as a positive electrode against the conductive substrate (1). The semiconductor layer includes a porous semiconductor layer (6) in which columnar structures (21) and porous structures (25) composed of fine semiconductor crystals of nanometer scale coexist, a surface of each of the structures being covered with an insulating film (22,24). Further, an average dimension of each of the porous structures (25) in a thickness direction of the semiconductor layer is smaller than or equal to 2 &mgr;m.
摘要:
A field emission type electron source 10 is provided with an n-type silicon substrate 1, a strong field drift layer 6 formed on the n-type silicon substrate 1 directly or inserting a polycrystalline silicon layer 3 therebetween, and an electrically conductive thin film 7, which is a thin gold film, formed on the strong field drift layer 6. Further, an ohmic electrode 2 is provided on the back surface of the n-type silicon substrate 1. Hereupon, electrons, which are injected from the n-type silicon substrate 1 into the strong field drift layer 6, drift in the strong field drift layer 6 toward the surface of the layer, and then pass through the electrically conductive thin film 7 to be emitted outward. The strong field drift layer 6 is formed by making the polycrystalline silicon 3 formed on the n-type silicon substrate 1 porous by means of an anodic oxidation, and further oxidizing it using dilute nitric acid or the like.
摘要:
An infrared sensor is formed with a first infrared detecting element for infrared detection disposed in a container through a supporting substrate, and a second infrared detecting element for temperature compensation also disposed in the container to be shielded by the supporting substrate of the first infrared detecting element from incident infrared within the container, while a temperature sensing section of the first infrared detecting element is born in non-contacting state with respect to a supporting part of the substrate for the element, whereby the sensitivity can be remarkably improved with a simpler arrangement while keeping a high precision and inexpensiveness.
摘要:
The electronic device includes a substrate, a first electrode formed over a surface of the substrate, a second electrode located on an opposite side of the first electrode from the substrate so as to face the first electrode, and a functional layer interposed between the first electrode and second electrode and formed by means of anodizing a first polycrystalline semiconductor layer in an electrolysis solution so as to contain a plurality of semiconductor nanocrystals. The electronic device further includes a second polycrystalline semiconductor layer interposed between the first electrode and the functional layer so as to be in close contact with the functional layer. The second polycrystalline semiconductor layer has an anodic oxidization rate in the electrolysis solution lower than that of the first polycrystalline semiconductor layer so as to function as a stop layer for exclusively anodizing the first polycrystalline semiconductor layer.
摘要:
The electronic device includes a substrate, a first electrode formed over a surface of the substrate, a second electrode located on an opposite side of the first electrode from the substrate so as to face the first electrode, and a functional layer interposed between the first electrode and second electrode and formed by means of anodizing a first polycrystalline semiconductor layer in an electrolysis solution so as to contain a plurality of semiconductor nanocrystals. The electronic device further includes a second polycrystalline semiconductor layer interposed between the first electrode and the functional layer so as to be in close contact with the functional layer. The second polycrystalline semiconductor layer has an anodic oxidization rate in the electrolysis solution lower than that of the first polycrystalline semiconductor layer so as to function as a stop layer for exclusively anodizing the first polycrystalline semiconductor layer.
摘要:
Disclosed is an electron source 10 including an electron source element 10a formed on the side of one surface of an insulative substrate 1. The electron source element 10a includes a lower electrode 2, a composite nanocrystal layer 6 and a surface electrode 7. The composite nanocrystal layer 6 includes a plurality of polycrystalline silicon grains 51, a thin silicon oxide film 52 formed over the surface of each of the grains 51, a number of nanocrystalline silicons 63 residing between the adjacent grains 51, and a silicon oxide film 64 formed over the surface of each of the nanocrystalline silicons 63. The silicon oxide film 64 is an insulating film having a thickness less than the crystal grain size of the nanocrystalline silicon 63. The surface electrode 7 is formed of a carbon thin film 7a laminated on the composite nanocrystal layer 6 while being in contact therewith, and a metal thin film 7b laminated on the carbon thin film 7a.
摘要:
A field emission-type electron source has a plurality of electron source elements (10a) formed on the side of one surface (front surface) of an insulative substrate (11) composed of a glass substrate. Each of electron source elements (10a) includes a lower electrode (12), a buffer layer (14) composed of an amorphous silicon layer formed on the lower electrode (12), a polycrystalline silicon layer (3) formed on the buffer layer (14), a strong-field drift layer (6) formed on the polycrystalline silicon layer (3), and a surface electrode (7) formed on the strong-field drift layer (6). The field emission-type electron source can achieved reduced in-plain variation in electron emission characteristics.
摘要:
A lighting device comprising a hermetically sealed vessel having a light transmissive property, a gas filled in the hermetically sealed vessel and configured to emit a first light having wavelength when excited by electron, the wavelength of the first light has a range from vacuum ultraviolet to visual light, an electron source disposed within the hermetically sealed vessel, the electron source configured to emit the electron when an operation voltage is applied, anode electrode disposed within the hermetically sealed vessel, a phosphor configured to emit the second light when excited by the first light. The electron source is configured to emit the electron having energy distribution when the electron source receives the emission voltage. The energy distribution having a peak energy. The peak energy is higher than an excitation energy of the gas. The peak energy is lower than an ionization energy of the gas.
摘要:
There is provided a field emission electron source at a low cost in which electrons can be emitted with a high stability and a high efficiency and a method of producing the same. In the field emission electron source, a strong electric field drift part 106 is formed on the n-type silicon substrate on the principal surface thereof and a surface electrode 107 made of a gold thin film is formed on the strong electric field drift part 106. And the ohmic electrode 2 is formed on the back surface of the n-type silicon substrate 101. In this field emission electron source 110, when the surface electrode 107 is disposed in the vacuum and a DC voltage is applied to the surface electrode 107 which is of a positive polarity with respect to the n-type silicon substrate 101 (ohmic electrode 2), electrons injected from the n-type silicon substrate 101 are drifted in the strong electric field drift part 106 and emitted through the surface electrode 107. The strong electric field drift part 106 comprises a drift region 161 which has a cross section in the structure of mesh at right angles to the direction of thickness of the n-type silicon substrate 1, which is an electrically conductive substrate, and a heat radiation region 162 which is filled in the voids of the mesh and has a heat conduction higher than that of the drift region 161.
摘要:
In a field emission electron source, a strong electric field drift part 106 is formed on the n-type silicon substrate on the principal surface thereof and a surface electrode 107 made of a gold thin film is formed on the strong electric field drift part 106. And the ohmic electrode 2 is formed on the back surface of the n-type silicon substrate 101. In this field emission electron source 110, when the surface electrode 107 is disposed in the vacuum and a DC voltage is applied to the surface electrode 107 which is of a positive polarity with respect to the n-type silicon substrate 101 (ohmic electrode 2), electrons injected from the n-type silicon substrate 101 are drifted in the strong electric field drift part 106 and emitted through the surface electrode 107. The strong electric field drift part 106 comprises a drift region 161 which has a cross section in the structure of mesh at right angles to the direction of thickness of the n-type silicon substrate 1, which is an electrically conductive substrate, and a heat radiation region 162 which is filled in the voids ox the mesh and has a heat conduction higher than that of the drift region 161.