Abstract:
A FinFET device and a method for manufacturing a FinFET device is provided. An example device may comprise a substrate including at least two fin structures. Each of the at least two fin structures may be in contact with a source and drain region and each of the at least two fin structures may include a strain relaxed buffer (SRB) overlying and in contact with the substrate and an upper layer overlying and in contact with the SRB. The composition of the upper layer and the SRB may be selected such that the upper layer of a first fin structure is subjected to a first mobility enhancing strain in the as-grown state, the first mobility enhancing strain being applied in a longitudinal direction from the source region to the drain region and where at least an upper part of the upper layer of a second fin structure is strain-relaxed.
Abstract:
The disclosure is related to a band engineered semiconductor device comprising a substrate, a protruding structure that is formed in a recess in the substrate and is extending above the recess having a buried portion and an extended portion, and wherein at least the extended portion comprises a semiconductor material having an inverted ‘V’ band gap profile with a band gap value increasing gradually from a first value at lateral edges of the structure to a second value, higher than the first value, in a center of the structure. The disclosure is also related to the method of manufacturing of such band engineered semiconductor device.
Abstract:
Disclosed are methods for selective deposition of doped Group IV-Sn materials. In some embodiments, the method includes providing a patterned substrate comprising at least a first region and a second region, where the first region includes an exposed first semiconductor material and the second region includes an exposed insulator material, and performing at least two cycles of a grow-etch cyclic process. Each cycle includes depositing a doped Group IV-Tin (Sn) layer, where depositing the doped Group IV-Sn layer includes providing a Group IV precursor, a Sn precursor, and a dopant precursor, and using an etch gas to etch back the deposited doped Group IV-Sn layer.
Abstract:
Disclosed are methods and mask structures for epitaxially growing substantially defect-free semiconductor material. In some embodiments, mask structure includes a first level defining a first trench extending through the first level, wherein a bottom of the first trench is defined by a semiconductor substrate, and a second level on top of the first level, wherein the second level defines a plurality of second trenches positioned at a non-zero angle with respect to the first trench.
Abstract:
Disclosed are methods and mask structures for epitaxially growing substantially defect-free semiconductor material. In some embodiments, the method may comprise providing a substrate comprising a first crystalline material, where the first crystalline material has a first lattice constant; providing a mask structure on the substrate, where the mask structure comprises a first level comprising a first opening extending through the first level (where a bottom of the first opening comprises the substrate), and a second level on top of the first level, where the second level comprises a plurality of second trenches positioned at a non-zero angle with respect to the first opening. The method may further comprise epitaxially growing a second crystalline material on the bottom of the first opening, where the second crystalline material has a second lattice constant different than the first lattice constant and defects in the second crystalline material are trapped in the first opening.
Abstract:
Disclosed are methods for selective deposition of doped Group IV-Sn materials. In some embodiments, the method includes providing a patterned substrate comprising at least a first region and a second region, where the first region includes an exposed first semiconductor material and the second region includes an exposed insulator material, and performing at least two cycles of a grow-etch cyclic process. Each cycle includes depositing a doped Group IV-Tin (Sn) layer, where depositing the doped Group IV-Sn layer includes providing a Group IV precursor, a Sn precursor, and a dopant precursor, and using an etch gas to etch back the deposited doped Group IV-Sn layer.
Abstract:
A method for reducing defects from an active layer is disclosed. The active layer may be part of a semiconductor in a semiconductor device. The active layer may be defined at least laterally by an isolation structure, and may physically contact an isolation structure at a contact interface. The isolation structure and the active layer may abut on a common substantially planar surface. The method may include providing a patterned stress-inducing layer on the common substantially planar surface. The stress-inducing layer may be adapted for inducing a stress field in the active layer, and induced stress field may result in a shear stress on a defect in the active layer. The method may also include performing an anneal step after providing the patterned stress-inducing layer on the common substantially planar surface. The method may additionally include removing the patterned stress-inducing layer from the common substantially planar surface.