Abstract:
The disclosed technology relates generally to semiconductor processing and more particularly to a method of forming a vertical field-effect transistor device. According to an aspect, a method of forming a vertical field-effect transistor device comprises forming on a substrate a vertical semiconductor structure protruding above the substrate and comprising a lower source/drain portion, an upper source/drain portion and a channel portion arranged between the lower source/drain portion and the upper source/drain portion. The method additionally comprises forming on the channel portion an epitaxial semiconductor stressor layer enclosing the channel portion, wherein the stressor layer and the channel portion are lattice mismatched, forming an insulating layer and a sacrificial structure, wherein the sacrificial structure encloses the channel portion with the stressor layer formed thereon and wherein the insulating layer embeds the semiconductor structure and the sacrificial structure, forming in the insulating layer an opening exposing a surface portion of the sacrificial structure, and etching the sacrificial structure through the opening in the insulating layer, thereby forming a cavity exposing the stressor layer enclosing the channel portion. The method further comprises, subsequent to etching the sacrificial structure, etching the stressor layer in the cavity, and subsequent to etching the stressor layer, forming a gate stack in the cavity, wherein the gate stack encloses the channel portion of the vertical semiconductor structure.
Abstract:
A FinFET device and a method for manufacturing a FinFET device is provided. An example device may comprise a substrate including at least two fin structures. Each of the at least two fin structures may be in contact with a source and drain region and each of the at least two fin structures may include a strain relaxed buffer (SRB) overlying and in contact with the substrate and an upper layer overlying and in contact with the SRB. The composition of the upper layer and the SRB may be selected such that the upper layer of a first fin structure is subjected to a first mobility enhancing strain in the as-grown state, the first mobility enhancing strain being applied in a longitudinal direction from the source region to the drain region and where at least an upper part of the upper layer of a second fin structure is strain-relaxed.
Abstract:
The disclosed technology relates to transistors having a strained quantum well for carrier confinement, and a method for manufacturing thereof. In one aspect, a FinFET or a planar FET device comprises a semiconductor substrate, a strain-relaxed buffer layer comprising Ge formed on the semiconductor substrate, a channel layer formed on the strain-relaxed buffer layer, and a strained quantum barrier layer comprising SiGe interposed between and in contact with the strain-relaxed buffer layer and the channel layer. The compositions of the strain-relaxed buffer layer, the strained quantum barrier layer and the channel layer are chosen such that a band offset of the channel layer and a band offset of the strained quantum barrier layer have opposite signs with respect to the strain-relaxed buffer layer.
Abstract:
A method includes: forming a structure on a frontside of a substrate, the structure including a first and a second source/drain body located in a first and a second source/drain region, respectively, and a channel body including a channel layer extending between the first and second source/drain bodies; forming a trench beside the first source/drain region by etching the substrate such that a lower portion of the trench undercuts the first source/drain region; forming a liner on the trench; forming an opening in the liner underneath the first source/drain region; and forming a dummy interconnect in the trench; where the method further includes exposing the dummy interconnect from a backside of the substrate; removing the dummy interconnect selectively to the liner; and forming a buried interconnect of a conductive material in the trench, where the buried interconnect is connected to the first source/drain body via the opening in the liner.
Abstract:
A semiconductor structure comprises a semiconductor substrate having a top layer and one or more semiconductor monocrystalline nanostructures. Each nanostructure has a first and a second extremity defining an axis parallel to the top surface of the semiconductor substrate and separated therefrom by a distance, and a source structure epitaxially grown on the first extremity and a drain structure epitaxially grown on the second extremity. The source and drain structures are made of a p-doped (or alternatively n-doped) semiconductor monocrystalline material having a smaller (or alternatively larger) unstrained lattice constant than the unstrained lattice constant of the semiconductor monocrystalline material making the semiconductor monocrystalline nanostructure on which they are grown, thereby creating compressive (or alternatively tensile) strain in that semiconductor monocrystalline nanostructure.
Abstract:
Disclosed herein is a semiconductor structure including: (i) a monocrystalline substrate having a top surface, (ii) a non-crystalline structure overlying the monocrystalline substrate and including an opening having a width smaller than 10 microns and exposing part of the top surface of the monocrystalline substrate. The semiconductor structure also includes (iii) a buffer structure having a bottom surface abutting the part and a top surface having less than 108 threading dislocations per cm2, the buffer structure being made of a material having a first lattice constant. The semiconductor structure also includes (iv) one or more group IV monocrystalline structures abutting the buffer structure and that are made of a material having a second lattice constant, different from the first lattice constant.
Abstract:
A method for reducing defects from an active layer is disclosed. The active layer may be part of a semiconductor in a semiconductor device. The active layer may be defined at least laterally by an isolation structure, and may physically contact an isolation structure at a contact interface. The isolation structure and the active layer may abut on a common substantially planar surface. The method may include providing a patterned stress-inducing layer on the common substantially planar surface. The stress-inducing layer may be adapted for inducing a stress field in the active layer, and induced stress field may result in a shear stress on a defect in the active layer. The method may also include performing an anneal step after providing the patterned stress-inducing layer on the common substantially planar surface. The method may additionally include removing the patterned stress-inducing layer from the common substantially planar surface.
Abstract:
An implant free quantum well transistor wherein the doped region comprises an implant region having an increased concentration of dopants with respect to the concentration of dopants of adjacent regions of the substrate, the implant region being substantially positioned at a side of the quantum well region opposing the gate region.
Abstract:
An implant free quantum well transistor wherein the doped region comprises an implant region having an increased concentration of dopants with respect to the concentration of dopants of adjacent regions of the substrate, the implant region being substantially positioned at a side of the quantum well region opposing the gate region.
Abstract:
A device and method for forming a vertical channel device is disclosed. The method includes: forming a vertical semiconductor pillar on a substrate, the vertical semiconductor pillar including a first pillar section, a second pillar section and a third pillar section, wherein the second pillar section is arranged between the first pillar section and the third pillar section and wherein the second pillar section is formed of a material being different from a material forming an upper portion of the first pillar section and different from a material forming a lower portion of the third pillar section; forming a spacer layer on a peripheral surface of the upper portion of the first pillar section and on a peripheral surface of the lower portion of the third pillar section; and forming a gate stack embedding the second pillar section and said upper portion of the first pillar section and said lower portion of the third pillar section, wherein the spacer layer forms a spacer between the gate stack and said upper portion of the first pillar section and between the gate stack and said lower portion of the third pillar section.