Abstract:
Disclosed are methods for selective deposition of doped Group IV-Sn materials. In some embodiments, the method includes providing a patterned substrate comprising at least a first region and a second region, where the first region includes an exposed first semiconductor material and the second region includes an exposed insulator material, and performing at least two cycles of a grow-etch cyclic process. Each cycle includes depositing a doped Group IV-Tin (Sn) layer, where depositing the doped Group IV-Sn layer includes providing a Group IV precursor, a Sn precursor, and a dopant precursor, and using an etch gas to etch back the deposited doped Group IV-Sn layer.
Abstract:
A method of forming an internal spacer between nanowires, the method involving: providing a fin comprising a stack of layers of sacrificial material alternated with nanowire material, and selectively removing part of the sacrificial material, thereby forming a recess. The method also involves depositing dielectric material into the recess resulting in dielectric material within the recess and excess dielectric material outside the recess, where a crevice remains in the dielectric material in each recess, and removing the excess dielectric material using a first etchant. The method also involves enlarging the crevices to form a gap using a second etchant such that a remaining dielectric material still covers the sacrificial material and partly covers the nanowire material, and such that outer ends of the nanowire material are accessible; and growing electrode material on the outer ends such that the electrode material from neighboring outer ends merge, thereby covering the gap.
Abstract:
A method of forming an internal spacer between nanowires, the method involving: providing a fin comprising a stack of layers of sacrificial material alternated with nanowire material, and selectively removing part of the sacrificial material, thereby forming a recess. The method also involves depositing dielectric material into the recess resulting in dielectric material within the recess and excess dielectric material outside the recess, where a crevice remains in the dielectric material in each recess, and removing the excess dielectric material using a first etchant. The method also involves enlarging the crevices to form a gap using a second etchant such that a remaining dielectric material still covers the sacrificial material and partly covers the nanowire material, and such that outer ends of the nanowire material are accessible; and growing electrode material on the outer ends such that the electrode material from neighboring outer ends merge, thereby covering the gap.
Abstract:
An example embodiment relates to a method for making a contact to a source or drain region of a semiconductor device. The method may include providing the semiconductor device having at least one source or drain region, the source or drain region having an exposed area. The method may further include partially etching the source or drain region such that the exposed area is increased. The method may further include providing a contact covering at least the etched part of the source or drain region. The contact may contact the source or drain region on at least 3 sides of the source or drain region.
Abstract:
A method for forming a Ga-doped SiGe layer comprises depositing, in the presence of a C-containing Ga precursor, Ga-doped SiGe on a substrate, thereby forming a first portion of the Ga-doped SiGe layer. The method further comprises depositing, in the absence of the C-containing Ga precursor, SiGe on the first portion, thereby forming a second portion of the Ga-doped SiGe layer.
Abstract:
A method for forming a Ga-doped SiGe layer comprises depositing, in the presence of a C-containing Ga precursor, Ga-doped SiGe on a substrate, thereby forming a first portion of the Ga-doped SiGe layer. The method further comprises depositing, in the absence of the C-containing Ga precursor, SiGe on the first portion, thereby forming a second portion of the Ga-doped SiGe layer.
Abstract:
Disclosed are methods for selective deposition of doped Group IV-Sn materials. In some embodiments, the method includes providing a patterned substrate comprising at least a first region and a second region, where the first region includes an exposed first semiconductor material and the second region includes an exposed insulator material, and performing at least two cycles of a grow-etch cyclic process. Each cycle includes depositing a doped Group IV-Tin (Sn) layer, where depositing the doped Group IV-Sn layer includes providing a Group IV precursor, a Sn precursor, and a dopant precursor, and using an etch gas to etch back the deposited doped Group IV-Sn layer.