Abstract:
A tunable laser system includes a tunable laser to be scanned over a range of frequencies and an interferometer having a plurality of interferometer outputs. At least two interferometer outputs of the plurality of interferometer outputs have a phase difference. A wavelength reference has a spectral feature within the range of frequencies, and the spectral feature does not change in an expected operating environment of the tunable laser. Processing circuitry uses the spectral feature and the plurality of interferometer outputs to produce an absolute measurement of a wavelength of the tunable laser and controls the tunable laser based on a comparison of the absolute measurement of the wavelength of the tunable laser with a setpoint wavelength.
Abstract:
An optical sensor includes an optical fiber inscribed with densely-overlapping, chirped-frequency fiber Bragg gratings at multiple locations along the optical fiber such that light reflected from a location on the optical fiber is reflected at multiple frequencies in a range of frequencies. An entire length of the optical sensor includes densely-overlapping, chirped-frequency fiber Bragg gratings. At least two of the densely-overlapping, chirped-frequency fiber Bragg gratings overlap at every measurement point along the entire length of the optical sensor. An optical sensing system uses the optical sensor. A method of making the optical sensor is described.
Abstract:
An accurate measurement method and apparatus using an optical fiber are disclosed. A total change in optical length in an optical core in the optical fiber is determined that reflects an accumulation of all of the changes in optical length for multiple segment lengths of the optical core up to a point on the optical fiber. The total change in optical length in the optical core is provided for calculation of an average strain over a length of the optical core based on the detected total change in optical length.
Abstract:
An interferometric measurement system measures a spun optical fiber sensor that includes multiple optical cores configured in the fiber sensor. A calibration machine includes a calibration fixture having known dimensions, one or more automatically controllable actuators for wrapping the fiber sensor starting at one end of the fiber sensor onto a calibration fixture having known dimensions, and an actuator controller configured to control the one or more actuators with actuator control signals. Interferometric detection circuitry, coupled to the actuator controller and to the other end of the fiber sensor, detects measured interferometric pattern data associated with each of the multiple cores when the fiber sensor is wrapped onto the calibration fixture. Data processing circuitry determines compensation parameters that compensate for variations between an optimal configuration of the multiple cores and an actual configuration of the multiple cores in the fiber sensor based on the detected measured interferometric pattern data. The compensation parameters compensate subsequently-obtained measurement interferometric pattern data for the fiber sensor.
Abstract:
Where a flexible tool includes a tool body with a flexible portion, a distal end and a first optical fiber within the flexible portion, shape sensing can be achieved with increased accuracy by inserting or otherwise including a second optical fiber within the flexible portion. The increased accuracy can be achieved when the second optical fiber has a diameter larger than that of the first optical fiber. Once the shape of the flexible tool has been determined using at least the second optical fiber, the first optical fiber can be used for subsequent shape sensing. This may be particularly applicable where the tool includes an instrument such as an optical imaging device inserted in a channel of the tool, where not all of the width of the channel is occupied by functional components behind the operable end of the instrument.
Abstract:
An optical fiber includes multiple optical cores configured in the fiber including a set of primary cores and an auxiliary core. An interferometric measurement system uses measurements from the multiple primary cores to predict a response from the auxiliary core. The predicted auxiliary core response is compared with the actual auxiliary core response to determine if they differ by more than a predetermined amount, in which case the measurements from the multiple primary cores may be deemed unreliable.
Abstract:
Interferometric measurement signals are detected by a single optical interferometric interrogator for a length of a sensing light guide and an interferometric measurement data set corresponding to the interferometric measurement signals is generated. The interferometric measurement data set is transformed into a spectral domain to produce a transformed interferometric measurement data set. The transformed interferometric measurement data set is compared to a baseline interferometric data set to identify a time-varying signal corresponding to a time-varying disturbance. The baseline interferometric data set is representative of the sensing light guide not being subjected to the time-varying disturbance. A compensating signal is determined from the time-varying signal and used to compensate at least a portion of the interferometric measurement data set for the time-varying disturbance as part of producing a measurement of the parameter.
Abstract:
A fiber housing includes multiple shape sensing cores and a single optical core. A distal end of the fiber housing is positionable to direct the single optical core to a current point of an anatomical target. Collimated light over a first range of frequencies is projected from the single optical core to the current point. OFDR is used to detect reflected light scattered from the current point and to process the detected light to determine a distance to the current point. Light over a second range of frequencies is projected through the multiple shape sensing optical cores to the distal end of the fiber housing. OFDR is used to measure light reflected from the distal end of the fiber housing back through the multiple shape sensing optical cores and to process the measurement to determine a position in three dimensional space of the distal end of the fiber housing and a pointing direction of the distal end of the fiber housing. A position in three dimensional space of the current point is determined based on the determined position in three dimensional space of the distal end of the fiber housing, the pointing direction of the distal end of the fiber housing, and the determined distance.
Abstract:
A flexible tool includes an optical fiber including a proximal region, a distal region, an intermediate portion between the proximal region and the distal region and an bending region between the proximal region and the intermediate portion, wherein the intermediate portion is constrained to have a single degree of freedom that is translational substantially along an axis defined by the optical fiber at the intermediate portion. The optical fiber may be used to provide shape sensing of the flexible tool.
Abstract:
Optical frequency domain reflectometry (OFDR) circuitry to perform tasks on an optical fiber to generate calibration or correction data for calibrating or correcting a reference OFDR data set. A segmented technique is used which permits precise and accurate determination of the correction data for even initial and long fiber lengths. Correction information for each segment is stitched together to generate the correction data for the fiber.