摘要:
A charge canceling multiplying digital-to-analog converter (MDAC) is provided with a reference block having inputs to accept reference voltages each sample clock cycle. The MDAC includes a sampling block having inputs to accept differential analog input voltage signals each sample clock cycle. A differential amplifier has a negative input and positive input connected to the reference block and sampling block to receive differential amplifier input signals, and a positive output and a negative output to supply differential output voltage signals each amplify clock cycle. The sampling section includes a first pair of feedback capacitors connected between the differential amplifier negative input and positive output, and a second pair of feedback capacitors connected between the differential amplifier positive input and negative output each amplify clock cycle. A capacitor from the first pair of parallel feedback capacitors is swapped with a capacitor from the second pair prior to each sample clock cycle.
摘要:
A data converter module is provided with an analog interface to receive analog signals, a digital interface to transmit digital signals, and a configuration interface to accept configuration signals. The data conversion module also includes a data conversion array (DCA) with selectively engageable data conversion circuits for the conversion of analog input signals to digital output signals, where the data conversion circuits are responsive to the configuration signals. The DCA's data conversion circuits include configurable data resolution circuits and configurable data conversion speed circuits. For example, the configurable data resolution circuits may be selected from averaging, oversampling, and multi-stage pipelining circuits. The DCA configurable data speed circuit may interleave the outputs from multiple parallelly connected ADCs operating at different clock phases. In one aspect, the number of clock phases is selectable. Also provided are methods for configurable data conversion.
摘要:
A system and method are provided for frequency multiplication jitter correction. The method accepts an analog reference signal having a first frequency, and using the analog reference signal, derives a system clock signal having a second frequency, greater than the first frequency. A PLL using a voltage controlled oscillator (VCO) is one example of a frequency multiplier. The method samples the amplitude of the analog reference signal using the system clock signal and converts the sampled analog reference signal into a digitized reference signal. In response to comparing the digitized reference signal to an ideal digitized reference signal, the phase error correction for the system clock signal is derived. The phase error correction at a first instance of time can be applied to the digitized data signal, previously converted from an analog data signal sampled at a first instance of time with the system clock signal.
摘要:
A method is provided for supplying a customized data converter fabricated from a universal function die. The method initially fabricates a plurality of universal data converter dice. Each universal data converter die is capable of performing a first plurality of data conversion algorithms. After the dice are made, each universal data converter die is tested to verify the performance of the first plurality of data conversion algorithms. Subsequently, a request is received for a customized data converter capable of performing a first data conversion function, which is selected from among the first plurality of data conversion algorithms. The method then fabricates a customized data converter capable of performing the first data conversion function, using a tested universal data converter die. The unselected data converter functions are disabled (not enabled). A configuration interface may be used to enable the requested data conversion function.
摘要:
A system and method are provided for frequency multiplication jitter correction. The method accepts an analog reference signal having a first frequency, and using the analog reference signal, derives a system clock signal having a second frequency, greater than the first frequency. A PLL using a voltage controlled oscillator (VCO) is one example of a frequency multiplier. The method samples the amplitude of the analog reference signal using the system clock signal and converts the sampled analog reference signal into a digitized reference signal. In response to comparing the digitized reference signal to an ideal digitized reference signal, the phase error correction for the system clock signal is derived. The phase error correction at a first instance of time can be applied to the digitized data signal, previously converted from an analog data signal sampled at a first instance of time with the system clock signal.
摘要:
A method is provided for supplying a customized data converter fabricated from a universal function die. The method initially fabricates a plurality of universal data converter dice. Each universal data converter die is capable of performing a first plurality of data conversion algorithms. After the dice are made, each universal data converter die is tested to verify the performance of the first plurality of data conversion algorithms. Subsequently, a request is received for a customized data converter capable of performing a first data conversion function, which is selected from among the first plurality of data conversion algorithms. The method then fabricates a customized data converter capable of performing the first data conversion function, using a tested universal data converter die. The unselected data converter functions are disabled (not enabled). A configuration interface may be used to enable the requested data conversion function.
摘要:
A system and method are provided for frequency multiplication jitter correction. The method accepts an analog reference signal having a first frequency, and using the analog reference signal, derives a system clock signal having a second frequency, greater than the first frequency. A PLL using a voltage controlled oscillator (VCO) is one example of a frequency multiplier. The method samples the amplitude of the analog reference signal using the system clock signal and converts the sampled analog reference signal into a digitized reference signal. In response to comparing the digitized reference signal to an ideal digitized reference signal, the phase error correction for the system clock signal is derived. The phase error correction at a first instance of time can be applied to the digitized data signal, previously converted from an analog data signal sampled at a first instance of time with the system clock signal.
摘要:
A system and method are provided for frequency multiplication jitter correction. The method accepts an analog reference signal having a first frequency, and using the analog reference signal, derives a system clock signal having a second frequency, greater than the first frequency. A PLL using a voltage controlled oscillator (VCO) is one example of a frequency multiplier. The method samples the amplitude of the analog reference signal using the system clock signal and converts the sampled analog reference signal into a digitized reference signal. In response to comparing the digitized reference signal to an ideal digitized reference signal, the phase error correction for the system clock signal is derived. The phase error correction at a first instance of time can be applied to the digitized data signal, previously converted from an analog data signal sampled at a first instance of time with the system clock signal.
摘要:
A data converter module is provided with an analog interface to receive analog signals, a digital interface to transmit digital signals, and a configuration interface to accept configuration signals. The data conversion module also includes a data conversion array (DCA) with selectively engageable data conversion circuits for the conversion of analog input signals to digital output signals, where the data conversion circuits are responsive to the configuration signals. The DCA's data conversion circuits include configurable data resolution circuits and configurable data conversion speed circuits. For example, the configurable data resolution circuits may be selected from averaging, oversampling, and multi-stage pipelining circuits. The DCA configurable data speed circuit may interleave the outputs from multiple parallelly connected ADCs operating at different clock phases. In one aspect, the number of clock phases is selectable. Also provided are methods for configurable data conversion.