摘要:
A method is provided for supplying a customized data converter fabricated from a universal function die. The method initially fabricates a plurality of universal data converter dice. Each universal data converter die is capable of performing a first plurality of data conversion algorithms. After the dice are made, each universal data converter die is tested to verify the performance of the first plurality of data conversion algorithms. Subsequently, a request is received for a customized data converter capable of performing a first data conversion function, which is selected from among the first plurality of data conversion algorithms. The method then fabricates a customized data converter capable of performing the first data conversion function, using a tested universal data converter die. The unselected data converter functions are disabled (not enabled). A configuration interface may be used to enable the requested data conversion function.
摘要:
A system and method are provided for interfacing JESD204-to-PCIe communications. The method transceives JESD204 link layer messages with a JESD204 link layer. The method converts between JESD204 link layer messages and PCIe scrambled messages. The method converts between PCIe scrambled messages and PCIe encoded messages. The PCIe encoded messages are transceived at a JESD clock rate. The PCIe encoded messages transceived at the JESD clock rate are buffered and PCIe encoded messages are then transceived at a PCIe clock rate. The PCIe encoded messages at the PCIe clock rate are transceived with a PCIe physical layer. That is, PCIe encoded messages are either transmitted to the PCIe physical layer at the PCIe clock rate (the transmission path), or received from the PCIe physical layer (at the PCIe clock rate) and buffered (the receive path). The system and method also enable conventional JESD link layer-to-JESD physical layer communications.
摘要:
A multi-zone analog-to-digital converter (ADC) is provided that includes a track-and-hold (T/H) stage having a bandwidth of L Hertz (Hz) to accept an analog input signal, a clock input to accept a clock signal with a clock frequency of P Hz, and N deinterleaved signal outputs with a combined bandwidth of M Hz. N×(P/2)=M, L>Q×M, and Q is an integer >1. The T/H stage is able to sample an analog input signal in the Qth Nyquist Zone, where Q is an integer. A quantizer stage has N interleaved signal inputs connected to corresponding T/H stage signal outputs, a clock input to accept the clock signal, and an output to supply a digital output signal having a bandwidth of M Hz. A packaging interface typically connects the T/H stage to the quantizer stage, and has a bandwidth less than the clock frequency.
摘要:
A system and method are provided for frequency multiplication jitter correction. The method accepts an analog reference signal having a first frequency, and using the analog reference signal, derives a system clock signal having a second frequency, greater than the first frequency. A PLL using a voltage controlled oscillator (VCO) is one example of a frequency multiplier. The method samples the amplitude of the analog reference signal using the system clock signal and converts the sampled analog reference signal into a digitized reference signal. In response to comparing the digitized reference signal to an ideal digitized reference signal, the phase error correction for the system clock signal is derived. The phase error correction at a first instance of time can be applied to the digitized data signal, previously converted from an analog data signal sampled at a first instance of time with the system clock signal.
摘要:
A multi-zone digital-to-analog device is provided with a digital-to-analog (D/A) stage having an input to accept a digital input signal with a data bandwidth of M Hertz (Hz), a clock input to accept a clock signal with a clock frequency of P Hz, and an output to supply an analog value having a bandwidth of M Hz. An upsampling stage has an input to accept the analog value and a clock input to accept the clock signal. The upsampling stage has a device bandwidth of L Hz to supply an analog output signal with a full power bandwidth of K Hz, where (P/2)=M and M
摘要:
A system and method are provided for frequency multiplication jitter correction. The method accepts an analog reference signal having a first frequency, and using the analog reference signal, derives a system clock signal having a second frequency, greater than the first frequency. A PLL using a voltage controlled oscillator (VCO) is one example of a frequency multiplier. The method samples the amplitude of the analog reference signal using the system clock signal and converts the sampled analog reference signal into a digitized reference signal. In response to comparing the digitized reference signal to an ideal digitized reference signal, the phase error correction for the system clock signal is derived. The phase error correction at a first instance of time can be applied to the digitized data signal, previously converted from an analog data signal sampled at a first instance of time with the system clock signal.
摘要:
A system and method are provided for frequency multiplication jitter correction. The method accepts an analog reference signal having a first frequency, and using the analog reference signal, derives a system clock signal having a second frequency, greater than the first frequency. A PLL using a voltage controlled oscillator (VCO) is one example of a frequency multiplier. The method samples the amplitude of the analog reference signal using the system clock signal and converts the sampled analog reference signal into a digitized reference signal. In response to comparing the digitized reference signal to an ideal digitized reference signal, the phase error correction for the system clock signal is derived. The phase error correction at a first instance of time can be applied to the digitized data signal, previously converted from an analog data signal sampled at a first instance of time with the system clock signal.
摘要:
A multi-zone digital-to-analog device is provided with a digital-to-analog (D/A) stage having an input to accept a digital input signal with a data bandwidth of M Hertz (Hz), a clock input to accept a clock signal with a clock frequency of P Hz, and an output to supply an analog value having a bandwidth of M Hz. An upsampling stage has an input to accept the analog value and a clock input to accept the clock signal. The upsampling stage has a device bandwidth of L Hz to supply an analog output signal with a full power bandwidth of K Hz, where (P/2)=M and M
摘要:
A multi-zone analog-to-digital converter (ADC) is provided that includes a track-and-hold (T/H) stage having a bandwidth of L Hertz (Hz) to accept an analog input signal, a clock input to accept a clock signal with a clock frequency of P Hz, and N deinterleaved signal outputs with a combined bandwidth of M Hz. N×(P/2)=M, L>Q×M, and Q is an integer >1. The T/H stage is able to sample an analog input signal in the Qth Nyquist Zone, where Q is an integer. A quantizer stage has N interleaved signal inputs connected to corresponding T/H stage signal outputs, a clock input to accept the clock signal, and an output to supply a digital output signal having a bandwidth of M Hz. A packaging interface typically connects the T/H stage to the quantizer stage, and has a bandwidth less than the clock frequency.
摘要:
A method is provided for supplying a customized data converter fabricated from a universal function die. The method initially fabricates a plurality of universal data converter dice. Each universal data converter die is capable of performing a first plurality of data conversion algorithms. After the dice are made, each universal data converter die is tested to verify the performance of the first plurality of data conversion algorithms. Subsequently, a request is received for a customized data converter capable of performing a first data conversion function, which is selected from among the first plurality of data conversion algorithms. The method then fabricates a customized data converter capable of performing the first data conversion function, using a tested universal data converter die. The unselected data converter functions are disabled (not enabled). A configuration interface may be used to enable the requested data conversion function.