BACKSIDE CONTACT RESISTANCE REDUCTION FOR SEMICONDUCTOR DEVICES WITH METALLIZATION ON BOTH SIDES

    公开(公告)号:US20190157310A1

    公开(公告)日:2019-05-23

    申请号:US16306295

    申请日:2016-07-01

    Abstract: Techniques are disclosed for backside contact resistance reduction for semiconductor devices with metallization on both sides (MOBS). In some embodiments, the techniques described herein provide methods to recover low contact resistance that would otherwise be present with making backside contacts, thereby reducing or eliminating parasitic external resistance that degrades transistor performance. In some embodiments, the techniques include adding an epitaxial deposition of very highly doped crystalline semiconductor material in backside contact trenches to provide enhanced ohmic contact properties. In some cases, a backside source/drain (S/D) etch-stop layer may be formed below the replacement S/D regions of the one or more transistors formed on the transfer wafer (during frontside processing), such that when backside contact trenches are being formed, the backside S/D etch-stop layer may help stop the backside contact etch process before consuming a portion or all of the S/D material. Other embodiments may be described and/or disclosed.

    SILICON SUBSTRATE MODIFICATION TO ENABLE FORMATION OF THIN, RELAXED, GERMANIUM-BASED LAYER

    公开(公告)号:US20210083116A1

    公开(公告)日:2021-03-18

    申请号:US16611920

    申请日:2017-06-30

    Abstract: Techniques are disclosed for performing silicon (Si) substrate modification to enable formation of a thin, relaxed germanium (Ge)-based layer on the modified Si substrate. The thin, relaxed, Ge-based layer (e.g., having a thickness of at most 500 nm) can then serve as a template for the growth of compressively strained PMOS channel material and tensile strained NMOS channel material to achieve gains in hole and electron mobility, respectively, in the channel regions of the devices. Such a relatively thin Ge-based layer can be formed with suitable surface quality/relaxation levels due to the modification of the Si substrate, where such modification may include depositing a modification layer or performing ion implantation in/on the Si substrate. The modification layer can be characterized by the nucleation of defects which predominantly terminate within the Si substrate or the Ge-based layer, rather than running through to the top of the Ge-based layer.

Patent Agency Ranking