摘要:
Techniques are disclosed for forming high mobility NMOS fin-based transistors having an indium-rich channel region electrically isolated from the sub-fin by an aluminum-containing layer. The aluminum aluminum-containing layer may be provisioned within an indium-containing layer that includes the indium-rich channel region, or may be provisioned between the indium-containing layer and the sub-fin. The indium concentration of the indium-containing layer may be graded from an indium-poor concentration near the aluminum-containing barrier layer to an indium-rich concentration at the indium-rich channel layer. The indium-rich channel layer is at or otherwise proximate to the top of the fin, according to some example embodiments. The grading can be intentional and/or due to the effect of reorganization of atoms at the interface of indium-rich channel layer and the aluminum-containing barrier layer. Numerous variations and embodiments will be appreciated in light of this disclosure.
摘要:
Embodiments of the present disclosure describe techniques for backside isolation for devices of an integrated circuit (IC) and associated configurations. The IC may include a plurality of devices (e.g., transistors) formed on a semiconductor substrate. The semiconductor substrate may include substrate regions on which one or more devices are formed. Trenches may be disposed between the devices on the semiconductor substrate. Portions of the semiconductor substrate between the substrate regions may be removed to expose the corresponding trenches and form isolation regions. An insulating material may be formed in the isolation regions. Other embodiments may be described and/or claimed.
摘要:
Techniques are disclosed for forming p-MOS transistors having one or more carbon-based interface layers between epitaxially grown S/D regions and the channel region. In some cases, the carbon-based interface layer(s) may comprise a single layer having a carbon content of greater than 20% carbon and a thickness of 0.5-8 nm. In some cases, the carbon-based interface layer(s) may comprise a single layer having a carbon content of less than 5% and a thickness of 2-10 nm. In some such cases, the single layer may also comprise boron-doped silicon (Si:B) or boron-doped silicon germanium (SiGe:B). In some cases, one or more additional interface layers may be deposited on the carbon-based interface layer(s), where the additional interface layer(s) comprises Si:B and/or SiGe:B. The techniques can be used to improve short channel effects and improve the effective gate length of a resulting transistor.
摘要:
Techniques are disclosed for forming high mobility NMOS fin-based transistors having an indium-rich channel region electrically isolated from the sub-fin by an aluminum-containing layer. The aluminum aluminum-containing layer may be provisioned within an indium-containing layer that includes the indium-rich channel region, or may be provisioned between the indium-containing layer and the sub-fin. The indium concentration of the indium-containing layer may be graded from an indium-poor concentration near the aluminum-containing barrier layer to an indium-rich concentration at the indium-rich channel layer. The indium-rich channel layer is at or otherwise proximate to the top of the fin, according to some example embodiments. The grading can be intentional and/or due to the effect of reorganization of atoms at the interface of indium-rich channel layer and the aluminum-containing barrier layer. Numerous variations and embodiments will be appreciated in light of this disclosure.
摘要:
An embodiment includes a device comprising: a first epitaxial layer, coupled to a substrate, having a first lattice constant; a second epitaxial layer, on the first layer, having a second lattice constant; a third epitaxial layer, contacting an upper surface of the second layer, having a third lattice constant unequal to the second lattice constant; and an epitaxial device layer, on the third layer, including a channel region; wherein (a) the first layer is relaxed and includes defects, (b) the second layer is compressive strained and the third layer is tensile strained, and (c) the first, second, third, and device layers are all included in a trench. Other embodiments are described herein.
摘要:
Techniques are disclosed for forming transistor devices having reduced parasitic contact resistance relative to conventional devices. The techniques can be implemented, for example, using a metal contact such as one or more metals/alloys on silicon or silicon germanium (SiGe) source/drain regions. In accordance with one example embodiment, an intermediate tin doped III-V material layer is provided between the source/drain and contact metal to significantly reduce contact resistance. Partial or complete oxidation of the tin doped layer can be used to further improve contact resistance. In some example cases, the tin doped III-V material layer has a semiconducting phase near the substrate and an oxide phase near the metal contact. Numerous transistor configurations and suitable fabrication processes will be apparent in light of this disclosure, including both planar and non-planar transistor structures (e.g., FinFETs, nanowire transistors, etc), as well as strained and unstrained channel structures.
摘要:
Techniques are disclosed for incorporating high mobility strained channels into fin-based NMOS transistors (e.g., FinFETs such as double-gate, trigate, etc), wherein a stress material is cladded onto the channel area of the fin. In one example embodiment, a germanium or silicon germanium film is cladded onto silicon fins in order to provide a desired tensile strain in the core of the fin, although other fin and cladding materials can be used. The techniques are compatible with typical process flows, and cladding deposition can occur at a plurality of locations within typical process flow. In various embodiments, fins may be formed with a minimum width (or later thinned) so as to improve transistor performance. In some embodiments, a thinned fin also increases tensile strain across the core of a cladded fin. In some cases, strain in the core may be further enhanced by adding an embedded silicon epitaxial source and drain.
摘要:
Ge and III-V channel semiconductor devices having maximized compliance and free surface relaxation and methods of fabricating such Ge and III-V channel semiconductor devices are described. For example, a semiconductor device includes a semiconductor fin disposed above a semiconductor substrate. The semiconductor fin has a central protruding or recessed segment spaced apart from a pair of protruding outer segments along a length of the semiconductor fin. A cladding layer region is disposed on the central protruding or recessed segment of the semiconductor fin. A gate stack is disposed on the cladding layer region. Source/drain regions are disposed in the pair of protruding outer segments of the semiconductor fin.
摘要:
Techniques are disclosed for forming germanium (Ge)-rich channel transistors including one or more dopant diffusion barrier elements. The introduction of one or more dopant diffusion elements into at least a portion of a given source/drain (S/D) region helps inhibit the undesired diffusion of dopant (e.g., B, P, or As) into the adjacent Ge-rich channel region. In some embodiments, the elements that may be included in a given S/D region to help prevent the undesired dopant diffusion include at least one of tin and relatively high silicon. Further, in some such embodiments, carbon may also be included to help prevent the undesired dopant diffusion. In some embodiments, the one or more dopant diffusion barrier elements may be included in an interfacial layer between a given S/D region and the Ge-rich channel region and/or throughout at least a majority of a given S/D region. Numerous embodiments, configurations, and variations will be apparent.
摘要:
Techniques are disclosed for incorporating high mobility strained channels into fin-based NMOS transistors (e.g., FinFETs such as double-gate, trigate, etc), wherein a stress material is cladded onto the channel area of the fin. In one example embodiment, a germanium or silicon germanium film is cladded onto silicon fins in order to provide a desired tensile strain in the core of the fin, although other fin and cladding materials can be used. The techniques are compatible with typical process flows, and cladding deposition can occur at a plurality of locations within typical process flow. In various embodiments, fins may be formed with a minimum width (or later thinned) so as to improve transistor performance. In some embodiments, a thinned fin also increases tensile strain across the core of a cladded fin. In some cases, strain in the core may be further enhanced by adding an embedded silicon epitaxial source and drain.