Abstract:
A honeycomb body, in particular a catalyst carrier body, includes metallic foil of high-temperature corrosion-resistant steel with connecting points and an oxide layer with a thickness of 60 to 80 or 70 to 75 nm on each surface. The foil is composed of steel with chromium and aluminum components, particularly 1 to 5% aluminum. The oxide layer is substantially aluminum oxide or γ-aluminum oxide with a uniform thickness having a tolerance of less than 10% or less than 5% on all surfaces. The oxide layer may be on a rolled foil having a mean surface roughness of greater than 0.3 or 0.5 μm or approximately 0.6 μm in rolling direction and/or transversely thereto. The honeycomb body is durable under high loads and has defined connecting points. A foil having an oxide coat and a method for producing an oxide coat on a metallic foil are also provided.
Abstract:
A foil for producing a metal honeycomb or catalyst carrier body, has an average surface roughness of more than 0.3 μm (micrometers) on both surfaces in at least one measurement direction. Preferably, the foil is rolled and has an average surface roughness of more than 0.3 or 0.5 μm, especially approximately 0.6 μm, in the rolling direction and/or transverse thereto. The foil can have an oxide coating with a thickness between 60 and 80 or between 70 and 75 nm (nanometers) on both surfaces. Despite the roughness, an even thickness of the oxide coating with a tolerance of less than 10% or 5% is advantageous on both surfaces. The foil allows production of durable honeycomb bodies, especially for exhaust systems of internal combustion engines, requiring an exactly defined distribution and quality of compounds in the interior thereof. A honeycomb body and method of production using a foil, are also provided.
Abstract:
A method for determining an amount of liquid removed from a tank per unit time includes discontinuously feeding the liquid to exhaust gas of an internal combustion engine by at least feeding the liquid through an injection line into the exhaust gas, measuring pressures simultaneously at least at two points in the injection line and determining an amount of liquid fed in per unit time from the measured pressures. The amount of liquid removed between a first point in time and a second point in time is further derived by integrating the amounts of liquid removed per unit time over a period of time from the first point in time to the second point in time. The method allows the precise consumption of the liquid to be calculated and the remaining amount of liquid in the tank to be additionally determined. On-board diagnosis is further possible with the method.
Abstract:
A device for producing electrical energy from the exhaust gas of an internal combustion engine, includes a generator with an exhaust gas inlet connection, an exhaust gas outlet connection and at least one heat exchange section therebetween. At least one flow diversion and/or flow division is provided between the exhaust gas inlet connection and the heat exchange section. The heat exchange section has a plurality of flow paths perpendicular to the exhaust gas inlet connection, to be assigned to a plurality of heat exchange units. At least a portion of the heat exchange assembly has at least one thermoelectric element and a cooling device. The at least one thermoelectric element is captively connected to the cooling device. A motor vehicle having the device is also provided.
Abstract:
A method and a device provide for the controlled feeding of a reducing agent into an exhaust gas treatment unit with a storage capability for an exhaust gas component to be reduced which is generated from a mobile internal combustion engine. The method includes at least the following steps: a) determination of a quantity of the exhaust gas component to be reduced which is generated by the mobile internal combustion engine, b) determination of a storage capability of the exhaust gas treatment unit for the exhaust gas component to be reduced, c) determination of a metering of the reducing agent into the exhaust gas treatment unit as a function of steps a) and b), and d) feeding the reducing agent into the exhaust gas treatment unit.
Abstract:
An electrically heatable honeycomb body is formed with at least one wound stack of sheet-metal foils. A first end of the stack is connected to an electrical terminal and a second end is connected to an electrical ground. The stack has a plurality of sheet-metal foils which are in electrical contact with one another and which are at least partially structured and determine, in the direction of the structures, a height of the stack. The stack has at least one curvature with a small radius of curvature and a relatively large radius of curvature. A curvature section including the at least one curvature has at least one zone with increased electrical resistance starting from the small radius of curvature and extending over part of the height of the stack. A motor vehicle having at least one honeycomb body, is also provided.
Abstract:
A device for supplying reducing agent solution into an exhaust system, includes a reservoir for reducing agent solution and a delivery device for delivering reducing agent solution from the reservoir to a reducing agent infeed configuration. A delivery height to be overcome between the reservoir and the reducing agent infeed configuration is less than 1.5 meters and the delivery device includes a diaphragm pump. The device permits the dosed metering of reducing agent solution into an exhaust system of an internal combustion engine regardless of prevailing boundary conditions, in particular regardless of the position of the device, which is for example influenced by a position of a corresponding automobile. In particular, it is thus also possible to ensure reliable metering of reducing agent solution into the exhaust system even when the automobile or motor vehicle is traveling over grades. A corresponding exhaust system, method and utility vehicle are also provided.
Abstract:
A method for producing metal fibers includes a machining production method using at least one rotating tool. A device for producing metal fibers, a filter material having such fibers, a method for producing the material, a particle filter using such material, a motor vehicle equipped with the filter, and a fiber, are also provided.
Abstract:
A method for gluing and brazing a honeycomb structure includes at least one partially structured foil with a pitch and a wave height. The method includes the steps of choosing a mean brazing material diameter of a powder brazing material, said diameter being 15% smaller than the height of the wave; determining a minimum thickness of the glue strip according to equation; gluing at least partially structured foil within the width of the glue strip on at least part of the wave crests formed by the undulation; brazing the honeycomb structure. The invention also relates to a corresponding honeycomb structure that ensures satisfactory joint connections even when said structure is used in the exhaust systems of automobiles.
Abstract:
An exhaust gas filter for cleaning an exhaust gas of an internal combustion engine, includes at least one strip-shaped filter layer. The filter layer has at least one filter region formed of a material through which a fluid can at least partly flow, for filtering out particulates from the exhaust gas. The filter layer also has at least one contact region with a catalytically active coating, for conversion of gaseous components of the exhaust gas. A method for cleaning an exhaust gas of an internal combustion engine is also provided.