Abstract:
An accelerometer is provided by a sample mass suspended in a central area of a support by pairs of resonating arms. One pair of arms lies on one axis through the sample mass. Another pair of arms lies on a second axis through the sample mass perpendicular to the one axis. Acceleration of the mass and support is detected by a measured change in resonant frequency of the arms of a pair. The measured change in resonant frequency is the magnitude of the acceleration and the axis along which the pair of arms lies provides the direction of the acceleration. Orthogonal components of acceleration are simultaneously measured by the pairs of arms lying on perpendicular axes. Electrostatic force-rebalance techniques and other known techniques for measuring acceleration in a direction perpendicular to the axes of the pairs of arms are readily incorporated to provide a third direction measurement of acceleration. The accelerometer is fabricated in a monolithic process which employs micromachining techniques.
Abstract:
According to one aspect, the disclosure is directed to an example embodiment in which a circuit-based arrangement includes a circuit-based substrate securing a channel, with an effective width that is not limited by the Debye screening length, along a surface of the substrate. A pair of reservoirs are included in or on the substrate and configured for containing and presenting a sample having bio-molecules for delivery in the channel. A pair of electrodes electrically couple a charge in the sample to enhance ionic current flow therein (e.g., to overcome the electrolyte screening), and a sense electrode is located along the channel for sensing a characteristic of the biological sample by using the electrostatic interaction between the enhanced ionic current flow of the sample and the sense electrode. Actual detection occurs by using a charge-signal processing circuit to process the sensed charge signal and, therefrom, provide an output indicative of a signature for the bio-molecules delivered in the channel.
Abstract:
A MEMS coupler and a method to form a MEMS structure having such a coupler are described. In an embodiment, a MEMS structure comprises a member and a substrate. A coupler extends through a portion of the member and connects the member with the substrate. The member is comprised of a first material and the coupler is comprised of a second material. In one embodiment, the first and second materials are substantially the same. In one embodiment, the second material is conductive and is different than the first material. In another embodiment, a method for fabricating a MEMS structure comprises first forming a member above a substrate. A coupler comprised of a conductive material is then formed to connect the member with the substrate.
Abstract:
Microshells including a perforated pre-sealing layer and an integrated getter layer are provided. The integrated getter layer may be disposed between other layers of a perforated pre-sealing layer. The perforated pre-sealing layer may include at least one perforation, and a sealing layer may be provided on the pre-sealing layer to close the perforation.
Abstract:
A MEMS structure having a temperature-compensated resonator member is described. The MEMS structure comprises an asymmetric stress inverter member coupled with a substrate. A resonator member is housed in the asymmetric stress inverter member and is suspended above the substrate. The asymmetric stress inverter member is used to alter the thermal coefficient of frequency of the resonator member by inducing a stress on the resonator member in response to a change in temperature.
Abstract:
A method and apparatus for providing a sub-ground plane for a micromachined device. The sub-ground plane is formed in or on the substrate. Above the sub-ground plane is a dielectric and then a discontinuous conductive layer used for interconnects for parts of the micromachined device. A movable microstructure is suspended above the interconnect layer. A conductive layer can be suspended above the movable microstructure. In one embodiment, the sub-ground plane is diffused into the substrate or a well in the substrate, and is of an opposite type from the type of silicon into which it is diffused. Alternatively, the sub-ground plane is formed from a conductive layer, deposited over the substrate before the layer used for interconnects.
Abstract:
A method and apparatus for providing a conductive plane beneath a suspended microstructure. A conductive region is diffused into a substrate. A dielectric layer is added, covering the substrate, and then removed from a portion of the conductive region. A spacer layer is deposited over the dielectric and exposed conductive region. A polysilicon layer is deposited over the spacer layer, and formed into the shape of the suspended microstructure. After removal of the spacer layer, the suspended microstructure is left free to move above an exposed conductive plane. The conductive plane is driven to the same potential as the microstructure.
Abstract:
A micromechanical filter having planar components, and manufacturable using very large scale integrated circuit microfabrication techniques. The input and output transducers are interdigitated comb electrodes. The mechanical coupling between the input and output transducers includes planar flexures, displacement of the electrodes producing bending of the elements of the flexures. By sealing micromechanical filters in a vacuum and providing on-board circuitry, high signal-to-noise ratios and quality factors are achievable. Construction of a real-time spectrum analyzer using many micromechanical resonators, provides a device with high accuracy and a short sample time.
Abstract:
A micromechanical filter having planar components, and manufacturable using very large scale integrated circuit microfabrication techniques. The input and output transducers are interdigitated comb electrodes. The mechanical coupling between the input and output transducers includes planar flexures, displacement of the electrodes producing bending of the elements of the flexures. By sealing micromechanical filters in a vacuum and providing on-board circuitry, high signal-to-noise ratios and quality factors are achievable. Construction of a real-time spectrum analyzer using many micromechanical resonators, provides a device with high accuracy and a short sample time.
Abstract:
A microbridge device for use as a sensor or an actuator is driven parallel to a substrate as a resonant microstructure. The microstructure comprises a stationary thin-film electrode secured to the substrate and located in a plane above it. A movable plate overlaying the substrate is suspended above it. The movable plate and electrode are patterned to provide for each at least one comb with fingers interdigitated with those of the other.