摘要:
Provided are a SiGe vertical optical path and a method for selectively forming a SiGe optical path normal structure for IR photodetection. The method comprises: forming a Si substrate surface; forming a Si feature, normal with respect to the Si substrate surface, such as a trench, via, or pillar; and, selectively forming a SiGe optical path overlying the Si normal feature. In some aspects, the Si substrate surface is formed a first plane and the Si normal feature has walls (sidewalls), normal with respect to the Si substrate surface, and a surface in a second plane, parallel to the first plane. Then, selectively forming a SiGe optical path overlying the Si normal feature includes forming a SiGe vertical optical path overlying the normal feature walls.
摘要:
A method of making CMOS devices on strained silicon on glass includes preparing a glass substrate, including forming a strained silicon layer on the glass substrate; forming a silicon oxide layer by plasma oxidation of the strained silicon layer; depositing a layer of doped polysilicon on the silicon oxide layer; forming a polysilicon gate; implanting ions to form a LDD structure; depositing and forming a spacer dielectric on the gate structure; implanting and activation ions to form source and drain structures; depositing a layer of metal film; annealing the layer of metal film to form salicide on the source, drain and gate structures; removing any unreacted metal film; depositing a layer of interlayer dielectric; and forming contact holes and metallizing.
摘要:
A method of fabricating a silicon-on-plastic layer via layer transfer includes depositing a layer of SiGe on a silicon substrate; depositing a layer of silicon; implanting splitting hydrogen ions into the silicon substrate; bonding a glass substrate to the silicon layer; splitting the wafer; removing the silicon layer and a portion of the SiGe layer; depositing a dielectric on the silicon side of the silicon-on-glass wafer; applying adhesive and bonding a plastic substrate to the silicon side of the silicon-on-glass wafer; removing the glass from the glass side of the bonded, silicon-on-glass wafer to form a silicon-on-plastic wafer; and completing a desired IC device on the silicon-on-plastic. Multi-level structure may be fabricated according to the method of the invention by repeating the last few steps of the method of the invention.
摘要:
A method of fabricating a germanium photo detector includes preparing a silicon substrate wafer and depositing and planarizing a silicon oxide layer on the silicon substrate. Contact holes are formed in the silicon oxide layer. An N+ epitaxial germanium layer is grown on the silicon oxide layer and in the contact holes. An N+ germanium layer is formed by ELO. The structure is smoothed and thinned. An intrinsic germanium layer is grown on the N+ epitaxial germanium layer. A P+ germanium layer is formed on the intrinsic germanium layer and a silicon oxide overcoat is deposited. A window is opened through the silicon oxide overcoat to the P+ germanium layer. A layer of conductive material is deposited on the silicon oxide overcoat and in the windows therein. The conductive material is etched to form individual sensing elements.
摘要:
A method of fabricating resistor memory array includes preparing a silicon substrate; depositing a bottom electrode, a sacrificial layer, and a hard mask layer on a substrate P+ layer; masking, patterning and etching to remove, in a first direction, a portion of the hard mask, the sacrificial material, the bottom electrode; depositing a layer of silicon oxide; masking, patterning and etching to remove, in a second direction perpendicular to the first direction, a portion of the hard mask, the sacrificial material, the bottom electrode;, and over etching to an N+ layer and at least 100 nm of the silicon substrate; depositing of a layer of silicon oxide; etching to remove any remaining hard mask and any remaining sacrificial material; depositing a layer of CMR material; depositing a top electrode; applying photoresist, patterning the photoresist and etching the top electrode; and incorporating the memory array into an integrated circuit.
摘要:
Disclosing is a strained silicon finFET device having a strained silicon fin channel in a double gate finFET structure. The disclosed finFET device is a double gate MOSFET consisting of a silicon fin channel controlled by a self-aligned double gate for suppressing short channel effect and enhancing drive current. The silicon fin channel of the disclosed finFET device is a strained silicon fin channel, comprising a strained silicon layer deposited on a seed fin having different lattice constant, for example, a silicon layer deposited on a silicon germanium seed fin, or a carbon doped silicon layer deposited on a silicon seed fin. The lattice mismatch between the silicon layer and the seed fin generates the strained silicon fin channel in the disclosed finFET device to improve hole and electron mobility enhancement, in addition to short channel effect reduction characteristic inherently in a finFET device.
摘要:
A method of fabricating a low defect germanium thin film includes preparing a silicon wafer for germanium deposition; forming a germanium film using a two-step CVD process, annealing the germanium thin film using a multiple cycle process; implanting hydrogen ions; depositing and smoothing a layer of tetraethylorthosilicate oxide (TEOS); preparing a counter wafer; bonding the germanium thin film to a counter wafer to form a bonded structure; annealing the bonded structure at a temperature of at least 375° C. to facilitate splitting of the bonded wafer; splitting the bonded structure to expose the germanium thin film; removing any remaining silicon from the germanium thin film surface along with a portion of the germanium thin film defect zone; and incorporating the low-defect germanium thin film into the desired end-product device.
摘要:
A method of fabricating a silicon-on-glass layer via layer transfer includes depositing a layer of SiGe on a silicon substrate; relaxing the SiGe layer; depositing a layer of silicon on the relaxed SiGe layer; implanting hydrogen ions in a second hydrogen implantation step to facilitate splitting of the wafer; bonding a glass substrate to the strained silicon layer to form a composite wafer; splitting the composite wafer to provide a split wafer; and processing the split wafer to prepare it for subsequent device fabrication.
摘要:
A 3D quantum dot optical path structure is provided, along with a method for selectively forming a 3D quantum dot optical path. The method comprises: forming a single crystal Si substrate with a surface; forming a Si feature in the substrate, such as a via, trench, or pillar; forming dots from a Ge or SiGe material overlying the Si feature; and, forming an optical path that includes the dots. In some aspects of the method, the Si feature has defect sites. For example, the Si feature may be formed with a miscut angle. As a result of the miscut angle, steps are formed in the Si feature plane. Then, the dots are formed in the Si feature steps. The miscut angle is in the range between 0.1 and 5 degrees, and the spacing between steps is in the range between 1 and 250 nanometers (nm).
摘要:
Transistors fabricated on SSOI (Strained Silicon On Insulator) substrate, which comprises a strained silicon layer disposed directly on an insulator layer, have enhanced device performance due to the strain-induced band modification of the strained silicon device channel and the limited silicon volume because of the insulator layer. The present invention discloses a SSOI substrate fabrication process comprising various novel approaches. One is the use of a thin relaxed SiGe layer as the strain-induced seed layer to facilitate integration and reduce processing cost. Another is the formation of split implant microcracks deep in the silicon substrate to reduce the number of threading dislocations reaching the strained silicon layer. And lastly is the two step annealing/thinning process for the strained silicon/SiGe multilayer film transfer without blister or flaking formation.