Abstract:
A process and apparatus for producing supported conductive networks which can be flexible or rigid, having densely packed circuits. The process and apparatus for making the conductive network involves forming a conductive material supported on a "dynamic pressure cushion" into a non-planar pattern defining the desired conductive circuits in relation to a fixed reference plane. The "dynamic pressure cushion" is a material having suitable viscosity and flow characteristics to flow out from under the conductive material as it is being formed and fill up any voids. To ensure that the "dynamic pressure cushion" properly flows without deforming the desired circuits, the die used to form the conductive material is provided with a material flow control grid and material expansion troughs. After forming the unwanted material is then mechanically removed in dimensional relation to the reference plane leaving the desired conductive circuits.
Abstract:
A connector for electrically conductive connection to electrically conductive contact pads of a circuit comprising a rigid housing; a flexible circuit housed, at least in part, in said housing and having an end portion carrying a row of conductive circuit areas on one face thereof corresponding to said row of pads; a spring structure having a resilient arched feature and being held captive by the housing while being permitted a limited desired float, the flexible circuit being captively located relative to the housing so that the areas are resiliently urged by the arched feature into electrically conductive contact with the pads when the connector is attached at a desired location to the circuit. The flexible circuit being releasable constrained in alignment with the spring structure by alignment elements of the spring structure, the alignment elements engaging a cooperating feature of the circuit to register the areas with the pads, when the connector is attached at a desired location to the circuit, with sufficient accuracy to ensure that only the desired conductive contact between the areas and the pads is achieved.
Abstract:
A fusible flexible printed circuit includes one or more conductors extending along a flexible dielectric substrate. Each conductor is comprised of a layer of electrically conductive material and a layer of fusible material extending along part or all of said conductive layer. One or more gaps is formed in the conductive layer at location opposite a segment of the fusible layer so that electrical current flowing through each conductor is required to pass in its entirety through the layer of fusible material at the location of each gap in the layer of conductive material. The integral fuses are designed to specific electrical parameters and may be located randomly along circuit runs. Preferably, the circuit is reinforced at the locations of the fuses by metal support strips designed to minimize motion stress on the fuses and the fuses are sealed within bubbles in a protective overlay which capture debris when the fuses are blown. The use of such a circuit to incorporate a variety of fuses having different fuse ratings into the conductive paths of a flexible printed circuit is also disclosed, as is a method of making the fusible circuit.
Abstract:
The present invention provides low cost electrical switch assemblies. The switch assembly comprises an array of resiliently flexible metallic conductors arranged in predetermined circuit pathways on a dielectric carrier panel. A plurality of apertures or cavities are provided at predetermined locations in the carrier panel. The switch contacts comprise a pair of generally L-shaped fingers which are integral extensions of the flexible conductors. The fingers extend cantilevered from opposite edge surfaces of the carrier panel defining an associated aperture or cavity, to beyond the geometric center of the said associated aperture or cavity, with the free ends of the fingers terminating adjacent one another. The free ends of the L-shaped fingers extend in part above or below the plane of the carrier panel, and are positioned in spaced relationship to one another so that the conductors they connect are normally open, but are sufficiently close to one another so that slight deflection of the fingers from their normal orientation moves the free ends in contact with each other to thereby close the switch. Alternatively, the free ends of the L-shaped fingers are positioned in contact with one another so that slight deflection of the fingers from their normal orientation breaks their contact. Completing the switch assembly is a protective overlay covering the conductors and switch contacts at least in part, formed of a flexible dielectric material.
Abstract:
The present invention provides an apertured circuit board having self-locking terminals which partially cover at least some of the apertures. The terminals, which are integral extensions of the circuit pathways, each include a pair of inwardly disposed generally L-shaped fingers. The terminals are adhesively anchored to the circuit board at the terminal peripheries and are covered in part by a dielectric overlay. The latter also provides environmental protection and electrical insulation to the circuit conductive pathways. The circuit board and integral sockets may be formed by photoimaging and chemical milling techniques.
Abstract:
The present invention provides an apertured circuit board having self-locking terminals which partially cover at least some of the apertures. The terminals, which are integral extensions of the circuit pathways, are adhesively anchored to the circuit board at the terminal peripheries and are covered in part by a dielectric overlay. The latter also provides environmental protection and electrical insulation to the circuit conductive pathways. A particular feature and advantage of the invention resides in the provision of an integral tie-down shoulder on each terminal for capturing by the dielectric overlay. The circuit board and integral sockets may be formed by photoimaging and chemical resist techniques.
Abstract:
A connector for connecting conductors of a flexible circuit to conductive elements comprising a one-piece, plastic housing defining at least one opening for access to the connector for contact with conductors of a flexible circuit located in the connector and biased for conductive contact with electrical contacts by a contact biasing spring, the flexible circuit and spring being mounted to a sled located in the housing and the sled having detents to engage respective openings in the housing to support the sled, and an associated method is also provided.
Abstract:
A supported conductive network (SCN), which can be flexible or rigid, can have self-aligning conductors which connect with corresponding conductors of other networks. The conductive network can be fabricated into densely packed contact clusters for use as electrical interconnectors or circuits. The methods and apparatus for making the conductive network involve forming a sheet of conductive material into ridges and troughs one of which defines the conductive network and the other of which is waste material and then mechanically removing the waste material. The conductive network thus formed is supported by a dielectric layer.
Abstract:
A connector for connecting conductor areas of a flexible circuit to contact pads of a PC board edge connector in which the connector pivotably supports a pair of springs which pivot to a first position, upon insertion of a PC board through the board opening of the connector, in which frictional engagement between the PC board edge connector and the conductor areas is minimized, and, a second position during final insertion of the PC board edge connector into the connector, in which the springs provide a sufficient contact pressure for adequate electrical contact between the conductors areas of the flexible circuit and the contact pads of the PC board edge connector. The pivotable arrangement of the springs minimizes the wear and tear of the internal components and the contact pads while ensuring adequate electrical connection between the interconnected components.
Abstract:
A connector for connecting flexible circuit conductors to contact pads of a PC board edge connector having a snap together housing of modular design having leaf springs used to resiliently bias the flexible circuits for contacting the pads, a slot for receiving the PC board edge connector, coil springs adjacent the slot for retaining the inserted PC board edge connector in the slot an alignment arrangement for alignment of the conductors and pads, protection for the free end regions of the flexible circuits and strain relief features, the connector being usable with conductors spaced 0.3 mm or less apart, and being easily assembled and disassembled.