摘要:
Exemplary embodiments provide precision resistive composite members and methods for manufacturing and using them. The resistive composite member can have controllable dimensions, geometric shapes, mechanical properties and resistance values. The resistive composite member can be used for high-performance sensors or instrument probes that require, for example, high contact pressure, ultra-high frequency, and/or enable state-of-the-art digital signal transmission, characterization, or measurement. The resistive composite member can include one or more “twisted-fiber-tow” or one or more arrays of “twisted-fiber-tow” contained in a suitable non-metallic or essentially non-metallic binder material. The “twisted-fiber-tow” can further include a number of fibers that are twisted individually and/or in bundles in order to control the mechanical properties and fine-tune the resistance of the resistive composite member and thus to customize the high-performance instrument probes.
摘要:
Disclosed herein is an electrical component comprising a segment having a diameter in the range of about 1 micrometers to about 10 cm, the segment comprising a plurality of non-metallic, resistive fibers in a non-metallic binder. The segment is precisely trimmed to impart to the segment an electrical resistance within 1% of the desired resistance value. A manufacturing system and methods of manufacturing components having precise specifications also are disclosed.
摘要:
Disclosed herein is an electrical component comprising a segment having a diameter in the range of about 1 micrometers to about 10 cm, the segment comprising a plurality of non-metallic, resistive fibers in a non-metallic binder. The segment is precisely trimmed to impart to the segment an electrical resistance within 1% of the desired resistance value. A manufacturing system and methods of manufacturing components having precise specifications also are disclosed.
摘要:
A fluid jet based micromachining device and method include a workpiece, and fluid jets directing synchronized forces at the workpiece so as to converge forces at a dynamic contact zone on the workpiece and provide mechanical support to the workpiece during periods of contact with the fluid jets.
摘要:
Exemplary embodiments provide precision resistive composite members and methods for manufacturing and using them. The resistive composite member can have controllable dimensions, geometric shapes, mechanical properties and resistance values. The resistive composite member can be used for high-performance sensors or instrument probes that require, for example, high contact pressure, ultra-high frequency, and/or enable state-of-the-art digital signal transmission, characterization, or measurement. The resistive composite member can include one or more “twisted-fiber-tow” or one or more arrays of “twisted-fiber-tow” contained in a suitable non-metallic or essentially non-metallic binder material. The “twisted-fiber-tow” can further include a number of fibers that are twisted individually and/or in bundles in order to control the mechanical properties and fine-tune the resistance of the resistive composite member and thus to customize the high-performance instrument probes.
摘要:
An electrical component including a substrate comprising an electroconductive filler in a first polymeric binder, and a coating layer adhered to at least a portion of the substrate surface, the coating layer comprising a nanostructured electroconductive particulate dispersed in a polymeric binder, such as an epoxy resin. A method of making the component also is described.
摘要:
A device for transferring electrical charge from an electrically conductive element to a rotating element is provided. The device has a body including a pultruded composite member having a multiplicity of electrically conductive fibers provided with a polymer matrix. The plurality of conductive fibers is oriented within the polymer matrix in a longitudinal direction of the pultruded composite member. The fibers each extend in a substantially parallel direction, parallel to a first axis. The body includes a first contact area. The body defines an aperture therein. The body has a second contact area on the periphery of the aperture spaced from the first contact area and a support. The support is secured to the body for supporting the body. The first contact area is for contact with the conductive element and the second contact area is for contact with the rotating element. The fibrillated portion is coincident with at least one of the first contact area or said second contact area.
摘要:
Disclosed herein is an electrical component including a substrate comprising an electroconductive filler in a first polymeric binder, and a coating layer adhered to at least a portion of the substrate surface, the coating layer comprising a nanostructured electroconductive particulate dispersed in a polymeric binder, such as an epoxy resin. A method of making the component also is disclosed, comprising obtaining a substrate containing an electroconductive filler in a polymeric binder, dispersing a nanostructured electroconductive particulate filler in a liquid that includes a solvent and/or a reactive diluent to form a dispersion, mixing the dispersion with a liquid resin to form a coating mixture, applying the coating mixture to the substrate, and crosslinking the applied coating mixture to form the coated substrate.
摘要:
A microbial fuel cell includes a cell housing having first and second chambers. The first chamber is adapted for containing a fluid including a biomas. The second chamber is adapted for containing an oxygenated fluid. A cathode extends into the cell housing second chamber. An electrode assembly includes a bound segment and an anode segment extending into the cell housing first chamber. The electrode assembly has multiple, substantially aligned, fibers. The outer surfaces of the fibers of the anode segment are adapted for receiving a biofilm. An electrically conductive tubular member envelops the fibers of the bound segment
摘要:
According to various embodiments, exemplary interconnects and methods for interconnection are provided that can include contacts formed by fiber bundles. The exemplary interconnects can be used to form separable or non-separable electro-mechanical connections between one or more of the generally accepted six levels of interconnection. In various embodiments, the exemplary interconnects can allow management of the thermal properties of the electronic devices. Exemplary interconnects can also provided reduced thickness allowing redundancy and additional compliance as desired.