Abstract:
Provided are: a dry reforming catalyst, in which a noble metal (M) is doped in a nickel yttria stabilized zirconia complex (Ni/YSZ) and an alloy (M-Ni alloy) of the noble metal (M) and nickel is formed at Ni sites on a surface of the nickel yttria stabilized zircona (YSZ); a method for producing the dry reforming catalyst using the noble metal/glucose; and a method for performing dry reforming using the catalyst. The present invention can exhibit a significantly higher dry reforming activity as compared with Ni/YSZ catalysts. Furthermore, the present invention can have an improved long-term performance by suppressing or preventing the deterioration. Furthermore, the preparing method is useful in performing the alloying of noble metal with Ni at Ni sites on the Ni/YSZ surface and can simplify the preparing process, and thus is suitable in mass production.
Abstract:
The present invention provides a hydrogen generating apparatus and a hydrogen generating method, wherein the hydrogen generating apparatus generates hydrogen by dehydrating formic acid, and comprises: a reactor for containing water and a heterogeneous catalyst; a formic acid feeder for feeding formic acid into the reactor; and a moisture remover for removing moisture generated from the reactor.
Abstract:
Provided is a fluid pumping device, and more particularly, a fluid pumping device capable of being used in fuel cell systems and the like and spatially separating a fluid temporary storage unit through which a fluid at high temperature passes from a pump, thereby maintaining the durability of the pump, facilitating replacement and management, and achieving a reduction in weight.
Abstract:
Provided is a catalyst for an oxygen reduction reaction, including an alloy in which two metals are mixed, in which the corresponding alloy is an alloy of iridium (Ir); and silicon (Si), phosphorus (P), germanium (Ge), or arsenic (As). The corresponding catalyst for the oxygen reduction reaction may have excellent price competitiveness while exhibiting a catalytic activity which is equal to or similar to that of an existing Pt catalyst. Accordingly, when the catalyst is used, the amount of platinum catalyst having low price competitiveness may be reduced, so that a production unit cost of a system to which the corresponding catalyst is applied may be lowered.
Abstract:
Provided is a method for preparing a catalyst for a dehydrogenation reaction of formic acid, the method including: preparing a nitrogen-doped carbon support; forming a mixed solution including a first aqueous metal precursor solution which includes palladium (Pd) and a second aqueous metal precursor solution which includes nickel (Ni); and forming a catalyst for a dehydrogenation reaction of formic acid by stirring the nitrogen-doped carbon support with the mixed solution, and then immobilizing alloy particles of Pd and Ni on the nitrogen-doped carbon support.
Abstract:
Disclosed are a method for supplying molten carbonate fuel cell with electrolyte and a molten carbonate fuel cell using the same, wherein a molten carbonate electrolyte is generated from a molten carbonate electrolyte precursor compound in a molten carbonate fuel cell and is supplied to the molten carbonate fuel cell.
Abstract:
By forming a structure wherein an oxygen ionic conductor or a mixed ionic-electronic conductor (MIEC) on a cathode surface is not covered by a molten carbonate electrolyte using an oxygen ionic conductor or a mixed ionic-electronic conductor having poor wettability on the molten carbonate electrolyte, a new electrochemical reaction site may be provided in addition to that provided by the molten carbonate electrolyte. As a result, cell performance, particularly cathode performance, can be improved even at low operation temperatures (e.g., 500-600° C.).
Abstract:
Disclosed is a hydrogen pump system operable without external electric power supply. The hydrogen pump system is capable of separating or purifying hydrogen without an external electric power supply.
Abstract:
Disclosed is an anode for a molten carbonate fuel cell (MCFC) having improved creep property by adding an additive for imparting creep resistance to nickel-aluminum alloy and nickel as materials for an anode. Improved sintering property, creep property and increased mechanical strength of a molten carbonate fuel cell may be obtained accordingly.
Abstract:
Disclosed are a reversible fuel cell oxygen electrode in which IrO2 is electrodeposited and formed on a porous carbon material and platinum is applied thereon to form a porous platinum layer, a reversible fuel cell including the same, and a method for preparing the same. According to the corresponding reversible fuel cell oxygen electrode, as the loading amounts of IrO2 and platinum used in the reversible fuel cell oxygen electrode can be lowered, it is possible to exhibit excellent reversible fuel cell performances (excellent fuel cell performance and water electrolysis performance) by improving the mass transport of water and oxygen while being capable of reducing the loading amounts of IrO2 and platinum. Further, it is possible to exhibit a good activity of a catalyst when the present disclosure is applied to a reversible fuel cell oxygen electrode and to reduce corrosion of carbon.