Abstract:
Briefly, in accordance with one or more embodiments, a conventional physical downlink control channel (PDCCH) is transmitted in a first region of a physical downlink control channel structure utilized by a remote radio head that has been assigned a cell identifier that is common to one or more other remote radio heads within the cell, and an enhanced physical downlink control channel (ePDCCH) is transmitted in a second region of the physical downlink control channel structure.
Abstract:
An apparatus includes a processor a channel state information (CSI) module operative on the processor to evaluate channel state information for a multiplicity of transmission points and to allocate a selection of channel state information reference signals (CSI-RS) to an uplink sub-frame allotted for transmitting channel quality/precoding matrix index/rank indicator (CQI/PMI/RI) information to a transmission point. The apparatus may further include a wireless transceiver operative to transmit the selection of CSI-RS in the uplink sub-frame to the transmission point in a wireless network, and receive information from the transmission point in response to the CSI-RS and a digital display operative to present the information received from the transmission point.
Abstract:
Technology for periodic channel state information (CSI) reporting using a physical uplink control channel (PUCCH) is disclosed. One method can include a user equipment (UE) generating a CSI report with a physical uplink control channel (PUCCH) first reporting type and a CSI report with a PUCCH second reporting type; and dropping a CSI report with the PUCCH first reporting type of a serving cell when the CSI report with the PUCCH first reporting type has a collision with the CSI report with PUCCH second reporting type of the serving cell. The PUCCH first reporting type can have a lower priority level than the PUCCH second reporting type.
Abstract:
Coordinated Multipoint (CoMP) involves multiple transmission points or cells coordinating their individual transmissions so that a target user equipment (LTE) experiences enhanced signal reception and/or reduced interference. In order to optimally implement downlink CoMP, a serving cell needs to obtain channel state information (CSI) for the downlink channels from the multiple transmission points to the UE. This disclosure deals with radio resource control (RRC) signaling for configuring the UE to obtain and report CSI for those downlink channels.
Abstract:
Briefly, in accordance with one or more embodiments, two or more cells are configured to perform coordinated multipoint (CoMP) transmission for one or more user equipment devices with a common media access control (MAC) or a common radio resource control (RRC). Measurement information is received from the one or more user equipment devices. One or more of the cells may be deactivated, or one or more additional cells may be activated for coordinated multipoint transmission based at least in part on the measurement information.
Abstract:
An apparatus may include a transceiver operable to receive a downlink message from a base station for a serving cell, the downlink message allocating a set of control parameters. The apparatus may also include a processor circuit communicatively coupled to the transceiver and an uplink power control module operable on the processor circuit to read the set of control parameters, and apply a signal-to-noise-and-interference (SINR) parameter based on the received set of control parameters to determine physical uplink shared channel (PUSCH) power to be applied for a PUSCH transmission. Other embodiments are disclosed and claimed.
Abstract:
Embodiments of the present disclosure describe devices, methods, computer-readable media, and systems configurations for configuration of downlink coordinated multipoint (CoMP) communications in a wireless communication network. A user equipment (UE) may receive, from an evolved Node B (eNB), a radio resource control (RRC) transmission including channel state informations (CSI) reference signal (RS) parameters for a plurality of transmission points. The UE may subsequently receive a medium access control (MAC) control element (CE) including a plurality of index bits corresponding to one or more activated transmission points of the plurality of transmission points for which the feedback module is to generate CSI-RS feedback. The eNB may dynamically update the transmission points that are activated for CSI-RS feedback. The UE may receive another MAC CE from the eNB to notify the UE of the updated set of activated transmission points.
Abstract:
Technology for periodic channel state information (CSI) reporting in a coordinated multipoint (CoMP) scenario is disclosed. One method can include a user equipment (UE) generating a plurality of CSI reports for transmission in a subframe for a plurality of CSI processes. Each CSI report can correspond to a CSI process with a CSIProcessIndex. The UE can drop CSI reports corresponding to CSI processes except a CSI process with a lowest CSIProcessIndex. The UE can transmit at least one CSI report for the CSI process to an evolved Node B (eNB).
Abstract:
Embodiments of the present disclosure describe devices, methods, computer-readable media and systems configurations for configuration of downlink coordinated multi-point (CoMP) communications in a wireless communication network. A user equipment (UE) may receive channel state information (CSI) reference signal (RS) parameters, from an evolved Node B (eNB), for individual transmission points of a coordinated multi-point (CoMP) Measurement Set including a plurality of transmission points. The UE may generate CSI-RS feedback information for the individual transmission points of the CoMP Measurement Set, and may transmit the generated CSI-RS feedback information for one or more of the individual transmission points to the eNB. The UE may receive a transmission from the eNB updating the individual transmission points included in the CoMP Measurement Set.
Abstract:
Briefly, in accordance with one or more embodiments, mobile station or user equipment receives pilot signals from two or more infrastructure nodes in a distributed antenna system, and calculates phase or timing information, or combinations thereof, from the pilot signals. The mobile station feeds back the phase or timing information, or combinations thereof, to the infrastructure nodes, and then receives one or more subsequent transmissions from the infrastructure nodes with phase shift or timing adjustments, or combinations thereof, calculated by the infrastructure nodes and applied to the spatial streams transmitted by the infrastructure nodes.