Abstract:
Disclosed is a display apparatus and a method for manufacturing the same, wherein the display apparatus comprises a substrate, a light shielding layer and a signal line on the substrate, a buffer layer on the light shielding layer and the signal line, an active layer on the buffer layer, a gate insulating film on the active layer, a gate electrode on the gate insulating film, a protection layer on the gate electrode, a first electrode of a display device on the protection layer, and a connection electrode configured to connect the signal line and the active layer with each other, wherein the light shielding layer and the signal line are disposed on the same layer, and the connection electrode and the first electrode are formed of the same material.
Abstract:
An electroluminescence display is provided. The electroluminescence display comprises data lines and gate lines intersecting each other and pixels arranged in a matrix, wherein each of subpixels of each pixel comprises: a first driver configured to drive a light-emitting element by using a first EM switching element, which switches the current path between a power supply line to which a pixel driving voltage is applied and the light-emitting element in response to a first light-emission control signal, and a first driving element connected between the first EM switching element and the light-emitting element; and a second driver configured to drive the light-emitting element by using a second EM switching element, which switches the current path between the power supply line and the light-emitting element in response to a second light-emission control signal, and a second driving element connected between the second EM switching element and the light-emitting element.
Abstract:
Provided are a thin film transistor substrate and a display using the same. A display includes: a first thin film transistor, the first thin film transistor including: a polycrystalline semiconductor layer, a first gate electrode on the polycrystalline semiconductor layer, a first source electrode, and a first drain electrode, a second thin film transistor, the second thin film transistor including: a second gate electrode, an oxide semiconductor layer on the second gate electrode, a second source electrode, and a second drain electrode, an intermediate insulating layer including a nitride layer and an oxide layer on the nitride layer, the intermediate insulating layer being disposed on the first gate electrode and the second gate electrode and under the oxide semiconductor layer, and an etch-stopper layer disposed on the oxide semiconductor layer.
Abstract:
A thin film transistor can include an active layer; a gate electrode at least partially overlapping with the active layer; and a source electrode and a drain electrode spaced apart from each other and connected to the active layer, respectively. Also, the active layer includes a channel overlapping with the gate electrode; a first connection portion connected to a first side of the channel portion; and a second connection portion connected to a second side of the channel portion. Also, the channel has a crystalline structure, the first connection portion includes a first amorphous portion contacting the channel, and the second connection portion includes a second amorphous portion contacting the channel.
Abstract:
Disclosed are a thin film transistor (TFT) including an oxide semiconductor layer capable of being applied to high-resolution flat panel display devices requiring high-speed driving, a gate driver including the TFT, and a display device including the gate driver. The TFT includes first oxide semiconductor layer consisting of indium-gallium-zinc-tin oxide (IGZTO) and a second oxide semiconductor layer including indium-gallium-zinc oxide (IGZO). A content ratio (Ga/In) of gallium (Ga) to indium (In) of the second oxide semiconductor layer is higher than a content (Ga/In) of Ga to In of the first oxide semiconductor layer, and a content ratio (Zn/In) of zinc (Zn) to In of the second oxide semiconductor layer is higher than a content (Zn/In) of Zn to In of the first oxide semiconductor layer.
Abstract:
Disclosed are a thin film transistor (TFT) including an oxide semiconductor layer capable of being applied to high-resolution flat panel display devices requiring high-speed driving, a gate driver including the TFT, and a display device including the gate driver. The TFT includes first oxide semiconductor layer consisting of indium-gallium-zinc-tin oxide (IGZTO) and a second oxide semiconductor layer including indium-gallium-zinc oxide (IGZO). A content ratio (Ga/In) of gallium (Ga) to indium (In) of the second oxide semiconductor layer is higher than a content (Ga/In) of Ga to In of the first oxide semiconductor layer, and a content ratio (Zn/In) of zinc (Zn) to In of the second oxide semiconductor layer is higher than a content (Zn/In) of Zn to In of the first oxide semiconductor layer.
Abstract:
A thin film transistor (TFT) substrate and a display device using the same are disclosed. The TFT substrate includes a first TFT including a polycrystalline semiconductor layer, a first gate electrode, a first source electrode, and a first drain electrode deposited on a substrate, a second TFT separated from the first TFT, the second TFT including a second gate electrode, an oxide semiconductor layer, a second source electrode, and a second drain electrode deposited on the first gate electrode, and a plurality of storage capacitors separated from the first and second TFTs, each storage capacitor including a first dummy semiconductor layer, a first gate insulating layer on the first dummy semiconductor layer, a first dummy gate electrode on the first gate insulating layer, and an intermediate insulating layer on the first dummy gate electrode.
Abstract:
Provided are a thin film transistor substrate and a display using the same. A display includes: a first area, a second area, a first thin film transistor disposed at the first area, the first thin film transistor including: a polycrystalline semiconductor layer, a first gate electrode on the polycrystalline semiconductor layer, a first source electrode, and a first drain electrode, a second thin film transistor disposed at the second area, the second thin film transistor including: a second gate electrode, an oxide semiconductor layer on the second gate electrode, a second source electrode, and a second drain electrode, a nitride layer on an area of the display device, other than the second area, the nitride layer covering the first gate electrode, and an oxide layer disposed over the first gate electrode and the second gate electrode.
Abstract:
Provided are a thin film transistor substrate and a display using the same. A thin film transistor substrate includes: a substrate, a first thin film transistor disposed on the substrate, the first thin film transistor including: a polycrystalline semiconductor layer, a first gate electrode on the polycrystalline semiconductor layer, a first source electrode, and a first drain electrode, a second thin film transistor disposed on the substrate, the second thin film transistor including: a second gate electrode, an oxide semiconductor layer on the second gate electrode, a second source electrode, and a second drain electrode, an intermediate insulating layer including a nitride layer and an oxide layer on the nitride layer, the intermediate insulating layer being disposed on the first gate electrode and the second gate electrode and under the oxide semiconductor layer, and an etch-stopper layer disposed on the oxide semiconductor layer.
Abstract:
Disclosed are a thin film transistor (TFT) including an oxide semiconductor layer capable of being applied to high-resolution flat panel display devices requiring high-speed driving, a gate driver including the TFT, and a display device including the gate driver. The TFT includes first oxide semiconductor layer consisting of indium-gallium-zinc-tin oxide (IGZTO) and a second oxide semiconductor layer including indium-gallium-zinc oxide (IGZO). A content ratio (Ga/In) of gallium (Ga) to indium (In) of the second oxide semiconductor layer is higher than a content (Ga/In) of Ga to In of the first oxide semiconductor layer, and a content ratio (Zn/In) of zinc (Zn) to In of the second oxide semiconductor layer is higher than a content (Zn/In) of Zn to In of the first oxide semiconductor layer.