Abstract:
Present example embodiments relate generally to semiconductor devices and methods of fabricating a semiconductor device comprising providing a substrate and forming a plurality of layers over the substrate. The plurality of layers comprise alternating first composition material layers and second composition material layers. The method further comprises forming an elongated post. The post extends from at least the top surface of the substrate.
Abstract:
A high aspect ratio structure is provided. The high aspect ratio structure includes a substrate, a plurality of stack structures, and a plurality of support structures. The stack structures are disposed on the substrate, and a trench is formed between adjacent two stack structures. Each of the stack structures includes a plurality of first material layers and a plurality of second material layers. The second material layers and the first material layers are disposed alternately. The support structures are respectively disposed between the substrate and the stack structures, wherein each of the support structures has a concave-convex surface.
Abstract:
A method for detecting an electrical defect of contact/via plugs is provided. In the method, the contact/via plugs are monitored by an electron-beam (E-Beam) inspection tool to capture an image with a VC (voltage contrast) difference, and then an image extraction is performed on the image with the VC difference, wherein the image extraction is based on Target gray level/back ground gray level. The extracted image is contrasted with a layout design base to obtain a blind contact or Quasi-blind issue of contact/via plugs. A grayscale value of the VC difference having the blind contact or Quasi-blind issue is compared with a determined range of grayscale value to determine whether the VC difference is abnormal.
Abstract:
An image inspection method of die to database is provided, and the positions in the to-be-inspected chips within one wafer may be selected. In the method, a plurality of inspection areas in a plurality of positions in the to-be-inspected chips within a wafer are selected, a plurality of raw images of the inspection areas are obtained, and a plurality of locations of the raw images are then decoded. After that, an image extraction is performed on the raw images to obtain a plurality of image contours. Thereafter, the image contours are compared with a design database of the chip in order to obtain a result of a defect inspection, and execute the same thing in whole wafer.
Abstract:
Present example embodiments relate generally to methods of fabricating a three-dimensional gate-all-around (GAA) vertical gate (VG) semiconductor structure comprising providing a substrate; forming a plurality of layers having alternating first insulative material layers and second insulative material layers over the substrate; identifying bit line and word line locations for the formation of bit lines and word lines; removing at least a portion of the plurality of layers outside of the identified bit line and word line locations, each of the removed portions extending through the plurality of layers to at least a top surface of the substrate; forming a vertical first insulative material structure in the removed portions; performing an isotropic etching process to remove the second insulative material from the second insulative material layers; forming bit lines in the second insulative material layers within the identified bit line locations; and forming word lines in the identified word line locations.
Abstract:
Present example embodiments relate generally to methods of fabricating a three-dimensional gate-all-around (GAA) vertical gate (VG) semiconductor structure comprising providing a substrate; forming a plurality of layers having alternating first insulative material layers and second insulative material layers over the substrate; identifying bit line and word line locations for the formation of bit lines and word lines; removing at least a portion of the plurality of layers outside of the identified bit line and word line locations, each of the removed portions extending through the plurality of layers to at least a top surface of the substrate; forming a vertical first insulative material structure in the removed portions; performing an isotropic etching process to remove the second insulative material from the second insulative material layers; forming bit lines in the second insulative material layers within the identified bit line locations; and forming word lines in the identified word line locations.
Abstract:
A patterning method is described. A patterned mask layer is formed on a material layer, having therein a first opening exposing a portion of the material layer. A pre-treatment process is performed to modify the material layer exposed in the first opening and form a modified region therein. An etching process is performed to remove the material layer in the modified region at least and form a second opening in the material layer.
Abstract:
An electron beam (E beam) inspection optimization is provided, in which a plurality of initial inspection regions in a chip are obtained, wherein a center of each of the initial inspection regions is a defect point. Thereafter, reset inspection regions are regenerated without overlap, wherein each of the reset inspection regions is within a scope covered by a field of view (FOV) and the scope contains at least one of the defect points. Afterwards, a center of the reset inspection region is transferred into an inspection center, and then an E beam inspection is performed on the inspection center.
Abstract:
An electron beam (E beam) inspection optimization is provided, in which a plurality of initial inspection regions in a chip are obtained, wherein a center of each of the initial inspection regions is a defect point. Thereafter, reset inspection regions are regenerated without overlap, wherein each of the reset inspection regions is within a scope covered by a field of view (FOV) and the scope contains at least one of the defect points. Afterwards, a center of the reset inspection region is transferred into an inspection center, and then an E beam inspection is performed on the inspection center.
Abstract:
A method for measuring a surface structure of a chip or a wafer is provided that includes obtaining an image of the surface structure of the chip, and then performing an image extraction on the image to convert the extracted image into a first circuit design file. A standard image is selected to convert into a second circuit design file, and then the standard image and at least one target in the image are compared to obtain a difference therebetween. According to the difference, at least one data of the surface structure may be made, wherein the data is selected from one of line edge roughness (LER), line width roughness (LWR), contact edge roughness (CER), critical dimension (CD), bias, 3 sigma, maximum, minimum, etc. and repeating defect.