Abstract:
A transistor structure including a substrate, a gate structure, first pocket doped regions, second pocket doped regions, and source/drain extension regions, and source/drain regions is provided. The gate structure is located on the substrate. The first pocket doped regions are located in the substrate aside the gate structure. A dopant of the first pocket doped region includes a group IVA element. The second pocket doped regions are located in the substrate aside the gate structure. A depth of the second pocket doped region is greater than a depth of the first pocket doped region. The source/drain extension regions are located in the first pocket doped regions. The source/drain regions are located in the substrate aside the gate structure. The source/drain extension region is located between the source/drain region and the gate structure.
Abstract:
A memory device and a method for fabricating the same are provided. A memory device includes a tunneling dielectric layer located on a substrate. The floating gate includes a first doped portion on the tunneling dielectric layer and a second doped portion located on the first doped portion. The first doped portion includes a first dopant and a second dopant, and the second doped portion includes the first dopant. The grain size of the first doped portion is smaller than the grain size of the second doped portion, and the grain size of the first doped portion is between 150 Å to 200 Å. The memory device further includes an inter-gate dielectric layer on the floating gate and a control gate on the inter-gate dielectric layer. A source region and a drain region are located in the substrate besides sidewalls of the floating gate.
Abstract:
An inspection method for contact by die to database is provided. In the method, a plurality of raw images of contacts in a wafer is obtained, and a plurality of locations of the raw images is then recoded to obtain a graphic file. After that, the graphic file is aligned on a design database of the chip. An image extraction is then performed on the raw images to obtain a plurality of image contours of the contacts. Thereafter, a difference in critical dimension between the image contours of the contacts and corresponding contacts in the design database are measured in order to obtain the inspection result for contacts in the wafer.
Abstract:
The method for fabricating a semiconductor device is provided. A doped semiconductor layer is formed over the substrate. The doped semiconductor layer is patterned to form a plurality of doped semiconductor patterns. An implantation process is performed to implant a dopant into the doped semiconductor patterns. A process temperature of the implantation process is no more than about −50° C. The dopants of the implantation process and the doped semiconductor patterns have the same conductivity type.
Abstract:
The method for fabricating a semiconductor device is provided. A doped semiconductor layer is formed over the substrate. The doped semiconductor layer is patterned to form a plurality of doped semiconductor patterns. An implantation process is performed to implant a dopant into the doped semiconductor patterns. A process temperature of the implantation process is no more than about −50° C. The dopants of the implantation process and the doped semiconductor patterns have the same conductivity type.
Abstract:
A method of detecting bitmap failure associated with physical coordinates is provided. In the method, data of wafer mapping inspection are obtained first, and the data include images of defects in each of layers within a wafer and a plurality of physical coordinates of the defects. Thereafter, a bitmap failure detection is performed to obtain digital coordinates of failure bits within the wafer. The digital coordinates are converted into a plurality of physical locations, and the physical locations are overlapped with the physical coordinates so as to rapidly obtain correlations between the failure bits and the defects.
Abstract:
A method for measuring a surface structure of a chip or a wafer is provided that includes obtaining an image of the surface structure of the chip, and then performing an image extraction on the image to convert the extracted image into a first circuit design file. A standard image is selected to convert into a second circuit design file, and then the standard image and at least one target in the image are compared to obtain a difference therebetween. According to the difference, at least one data of the surface structure may be made, wherein the data is selected from one of line edge roughness (LER), line width roughness (LWR), contact edge roughness (CER), critical dimension (CD), bias, 3 sigma, maximum, minimum, etc. and repeating defect.
Abstract:
A method for detecting defects of wafer by wafer sort is introduced. In the method, a wafer sort testing apparatus is used to obtain a DTL or ADART result, wherein a plurality of repaired sites in a wafer is highlighted according to the DTL or ADART result. A plurality of physical locations of the repaired sites is then output. An analysis equipment is used to match the physical locations with a graphic data system (GDS) design layout coordinate of the wafer so as to generate a data correlating with defects at the repaired sites.
Abstract:
Disclosed embodiments are generally related to semiconductor device inspection. One such embodiment involves positioning a detector at a distance from a surface of the semiconductor device being inspected and applying an energy to the semiconductor device. In the disclosed embodiment, the detector receives back-scattered energy resulting from applying the energy to the semiconductor device and the resultant back-scattered energy is processed and analyzed to determine whether defects are beneath the surface of the semiconductor device. The magnitude of the applied energy and the distance between the detector and the surface of the semiconductor device are selected so as to allow back-scattered electrons returned from applying to be effectively received by the detector.
Abstract:
A method for detecting an electrical defect of contact/via plugs is provided. In the method, the contact/via plugs are monitored by an electron-beam (E-Beam) inspection tool to capture an image with a VC (voltage contrast) difference, and then an image extraction is performed on the image with the VC difference, wherein the image extraction is based on Target gray level/back ground gray level. The extracted image is contrasted with a layout design base to obtain a blind contact or Quasi-blind issue of contact/via plugs. A grayscale value of the VC difference having the blind contact or Quasi-blind issue is compared with a determined range of grayscale value to determine whether the VC difference is abnormal.