Abstract:
An HDMI interconnect arrangement is presented that performs a pulse-amplitude modulation (PAM) conversion of the TMDS audio/video signals in order to simultaneously transmit all three channels over a single optical fiber. The set of three audio/video TMDS channels is applied as an input to a PAM-8 optical modulator, which functions to encode the set of three channels onto an optically-modulated output signal. The modulated optical signal is thereafter coupled into an optical fiber within an active HDMI cable and transmitted to an HDMI receiver (sink). The TMDS CLK signal is not included in this conversion into the optical domain, but remains as a separate electrical signal to be transmitted along a copper signal path within the active HDMI cable.
Abstract:
A silicon-based optical modulator is configured as a multi-segment device that utilizes a modified electrical data input signal format to address phase modulation nonlinearity and attenuation problems associated with free-carrier dispersion-based modulation. The modulator is formed to include M separate segments and a digital signal encoder is utilized to convert an N bit input data signal into a plurality of M drive signals for the M modulator segments, where M≧2N/2. The lengths of the modulator segments may also be adjusted to address the nonlinearity and attenuation problems. Additional phase adjustments may be utilized at the output of the modulator (beyond the combining waveguide).
Abstract:
A wafer scale implementation of an opto-electronic transceiver assembly process utilizes a silicon wafer as an optical reference plane and platform upon which all necessary optical and electronic components are simultaneously assembled for a plurality of separate transceiver modules. In particular, a silicon wafer is utilized as a “platform” (interposer) upon which all of the components for a multiple number of transceiver modules are mounted or integrated, with the top surface of the silicon interposer used as a reference plane for defining the optical signal path between separate optical components. Indeed, by using a single silicon wafer as the platform for a large number of separate transceiver modules, one is able to use a wafer scale assembly process, as well as optical alignment and testing of these modules.
Abstract:
A silicon-based optical modulator is configured as a multi-segment device that utilizes a modified electrical data input signal format to address phase modulation nonlinearity and attenuation problems associated with free-carrier dispersion-based modulation. The modulator is formed to include M separate segments and a digital signal encoder is utilized to convert an N bit input data signal into a plurality of M drive signals for the M modulator segments, where M≧2N/2. The lengths of the modulator segments may also be adjusted to address the nonlinearity and attenuation problems. Additional phase adjustments may be utilized at the output of the modulator (beyond the combining waveguide).
Abstract:
A silicon-on-insulator (SOI)-based tunable laser is formed to include the gain medium (such as a semiconductor optical amplifier) disposed within a cavity formed within the SOI substrate. A tunable wavelength reflecting element and associated phase matching element are formed on the surface of the SOI structure, with optical waveguides formed in the surface SOI layer providing the communication between these components. The tunable wavelength element is controlled to adjust the optical wavelength. Separate discrete lensing elements may be disposed in the cavity with the gain medium, providing efficient coupling of the optical signal into the SOI waveguides. Alternatively, the gain medium itself may be formed to include spot converting tapers on its endfaces, the tapers used to provide mode matching into the associated optical waveguides.
Abstract:
A silicon-based optical modulator structure includes one or more separate localized heating elements for changing the refractive index of an associated portion of the structure and thereby providing corrective adjustments to address unwanted variations in device performance. Heating is provided by thermo-optic devices such as, for example, silicon-based resistors, silicide resistors, forward-biased PN junctions, and the like, where any of these structures may easily be incorporated with a silicon-based optical modulator. The application of a DC voltage to any of these structures will generate heat, which then transfers into the waveguiding area. The increase in local temperature of the waveguiding area will, in turn, increase the refractive index of the waveguiding in the area. Control of the applied DC voltage results in controlling the refractive index
Abstract:
A system and method are provided for dilatation of, and delivery and deployment of stents at, a bifurcation. The system includes two guidewires, one disposed in each branch of the bifurcation. A device and stents are provided which allow accurate dilatation and stenting of the bifurcation, without removing the guidewires, and such that the stents closely conform to the geometry of the bifurcation.
Abstract:
A moving floor system that includes a moving work surface to move work products from an upstream end to a downstream end. The moving work surface is formed from a plurality of individual carts joined to each other. The stack of carts is moved along upper support rails located at an upper level. When each individual cart reaches the downstream end, a downstream lift conveyor moves the individual cart from the upper level to a lower level. When at the lower level, each individual cart is returned from the downstream end to the upstream end. When each individual cart reaches the upstream end, an upstream lift conveyor returns the individual carts from the lower level to the upper level. An upper drive mechanism provides the motive force to move the stack of carts along the upper level at the working speed.
Abstract:
A silicon-based optical modulator exhibiting improved modulation efficiency and control of “chirp” (i.e., time-varying optical phase) is provided by separately biasing a selected, first region of the modulating device (e.g., the polysilicon region, defined as the common node). In particular, the common node is biased to shift the voltage swing of the silicon-based optical modulator into its accumulation region, which exhibits a larger change in phase as a function of applied voltage (larger OMA) and improved extinction ratio. The response in the accumulation region is also relatively linear, allowing for the chirp to be more easily controlled. The electrical modulation input signal (and its inverse) are applied as separate inputs to the second region (e.g., the SOI region) of each arm of the modulator.