Abstract:
The semiconductor memory of the random access type has data lines, which can be connected to the local data lines in the memory cell array. The data lines are combined in groups and at least one group or individual data lines of the groups are formed by redundant data lines. Input/output lines lead from the memory in groups. A bus system organized in two planes is provided. The first plane is provided with bus lines which can be connected to all of the input/output lines, on the one hand, and to all of the data lines, on the other hand. The second plane has a plurality of individual partial buses, whose bus lines can be connected to in each case all of the data lines of at least two groups of data lines, on the one hand, and to all of the input/output lines of in each case one group, on the other hand.
Abstract:
A configuration for crosstalk attenuation in substantially mutually parallel word lines of DRAM circuits, includes a decoder provided at a first end of a word line, and a holding transistor. A pull-down device is provided as a "noise killer" at a second end of the word line, which opposite the first end. The pull-down device pulls down the potential of the word line in a standby and hold mode in the event of an active adjacent word line.
Abstract:
A circuit embodying the invention includes a gating circuit responsive to a first control signal and to a second externally supplied control signal having an active state and an inactive state. The first control signal is produced by a power supply circuit which is responsive to the application of an externally supplied operating voltage for producing an "internal" operating voltage and which produces the first control signal having an active state when the internal operating voltage reaches a predetermined value. The gating circuit has an output for producing a third control signal which is enabling only if the second control signal goes from its inactive state to its active state when the first control signal is already in, and remains in, its active state. The gating circuit prevents a chip from operating in an unintended mode at power-up.
Abstract:
The spacing of the bit lines and/or the master bit lines (MBLs) of a memory array is skewed to decrease the charging current required to precharge the bit-lines and or the master bit lines. In one embodiment of the invention, an integrated circuit (IC) includes an array of memory cells arranged in rows and columns, with a pair of bit lines (BLTi and BLCi) per column of memory cells with BLTi carrying the cell data and BLCi its complement. The bit lines are disposed within a first level of the IC and run generally parallel to each other wherein there is a certain capacitance, CINT, between each two paired bit lines (BLTi and BLCi) and a capacitance, CEXT, between the bit lines of adjacent columns. The bit lines are coupled to selected MBLs with the MBLs being paired so that one MBL of a pair (MBLT) carries bit line data and the other MBL of a pair (MBLC) carries the complement of that bit line data. The MBLs are formed on a second level of the IC and run generally parallel to each other wherein there is a capacitance (MCINT) between the two paired master bit lines and a capacitance (MCEXT) between the master bit lines of a pair and the adjacent master bit lines. The spacing between the bit lines is skewed in order to decrease CINT relative to CEXT, and/or the spacing between the MBLs is skewed in order to decrease MCINT relative to MCEXT.
Abstract:
A semiconductor memory including a plurality of memory banks disposed on an integrated circuit, each memory bank including an array of memory cells, wherein a first portion of memory cells of the plurality of memory banks has a first access speed and a second portion of memory cells of the plurality of memory banks has a second access speed, wherein the first access speed is different from the second access speed.
Abstract:
An integrated circuit module comprises a chip, the chip comprising a substrate with a first main area and a second main area, the first main area comprising two half-sets of pads, the chip further comprising an integrated circuit with components and two half-sets of connection lines, the connection lines connecting the components of the integrated circuit to the pads, the integrated circuit further comprising a changeover device, the changeover device having two switching states in order to interchange the electrical assignment between the half-sets of the connection lines and the half-sets of the pads, and a carrier, the carrier comprising contact pieces. The chip is arranged on the carrier with one of the two main areas of the chip facing the carrier and the contact pieces of the carrier are connected to the pads of the chip, wherein one of the two switching states of the changeover device is selected, depending on which of the two main areas of the chip is the area facing the carrier.
Abstract:
A method and apparatus for accessing a memory device. The method includes providing control signals for an access command to the memory device via an asynchronous interface and transmitting data for the access command to the memory device. The method also includes encoding, into the transmitted data, a clock signal. The encoded clock signal in the transmitted data is used by the memory device for receiving the data transmission.
Abstract:
The invention relates to a clock signal synchronizing method, and to a clock signal synchronizing device (101) to be used with the synchronization of clock signals (CLK, DQS), comprising: a delay means (102) with a variably controllable delay time (tvar), in which a clock signal (CLK) or a signal obtained therefrom is input, is loaded with the variably controllable delay time (tvar), and is output as delayed clock signal, a phase comparator (104) for comparing the phase of the clock signal (CLK) or of the signal obtained therefrom with the phase of the delayed clock signal or of a signal obtained therefrom (DCLK, FB), characterized in that additionally a means (401, 116) is provided for activating and/or deactivating said clock signal synchronizing device (101) as a function of control signals (RD) evaluated by an evaluating means (402).
Abstract:
A circuit having a clock signal synchronizing device with capability to filter clock-jitters is disclosed. One embodiment provides a delayed locked loop with capability to filter clock-jitter. Further, the invention relates to a clock signal synchronizing method with capability to filter clock-jitter.
Abstract:
One aspect of the invention relates to a voltage regulation process as well as to a voltage regulation system. A first voltage, present at an input of the voltage regulating system, is changed into a second voltage, which can be tapped at an output of the voltage regulation systems, with a first device for generating an essentially constant voltage from the first voltage, or a voltage derived from it. A further device is provided for generating a further voltage from the first voltage or a voltage derived from it, in particular a voltage which can be higher than the voltage generated by the first devices.