Abstract:
Isolating or identifying a cell based on a physical property of said cell can include providing a cell suspension; passing said suspension through a microfluidic channel that includes a constriction; passing the cell suspension through the constriction; and, contacting said cell suspension solution with a compound. The constriction can be sized to preferentially deform a relatively larger cell compared to a relatively smaller cell.
Abstract:
Described herein are systems, methods, and apparatus for automatically identifying and recovering individual cells of interest from a sample of biological matter, e.g., a biological fluid. Also described are methods of enriching a cell type of interest. These systems, methods, and apparatus allow for coordinated performance of two or more of the following, e.g., all with the same device, thereby enabling high throughput: cell enrichment, cell identification, and individual cell recovery for further analysis (e.g., sequencing) of individual recovered cells.
Abstract:
Described herein are systems, methods, and apparatus for automatically identifying and recovering individual cells of interest from a sample of biological matter, e.g., a biological fluid. Also described are methods of enriching a cell type of interest. These systems, methods, and apparatus allow for coordinated performance of two or more of the following, e.g., all with the same device, thereby enabling high throughput: cell enrichment, cell identification, and individual cell recovery for further analysis (e.g., sequencing) of individual recovered cells.
Abstract:
Described herein are systems, methods, and apparatus for automatically identifying and recovering individual cells of interest from a sample of biological matter, e.g., a biological fluid. Also described are methods of enriching a cell type of interest. These systems, methods, and apparatus allow for coordinated performance of two or more of the following, e.g., all with the same device, thereby enabling high throughput: cell enrichment, cell identification, and individual cell recovery for further analysis (e.g., sequencing) of individual recovered cells.
Abstract:
Described herein are systems, methods, and apparatus for automatically identifying and recovering individual cells of interest from a sample of biological matter, e.g., a biological fluid. Also described are methods of enriching a cell type of interest. These systems, methods, and apparatus allow for coordinated performance of two or more of the following, e.g., all with the same device, thereby enabling high throughput: cell enrichment, cell identification, and individual cell recovery for further analysis (e.g., sequencing) of individual recovered cells.