Abstract:
An electronic device comprising lower and upper decks adjacent to a source. The lower and upper decks comprise tiers of alternating conductive materials and dielectric materials. Memory pillars in the lower and upper decks are configured to be operably coupled to the source. The memory pillars comprise contact plugs in the upper deck, cell films in the lower and upper decks, and fill materials in the lower and upper decks. The cell films in the upper deck are adjacent to the contact plugs and the fill materials in the upper deck are adjacent to the contact plugs. Dummy pillars are in a central region of the lower deck and the upper deck. The dummy pillars comprise an oxide material in the upper deck, the oxide material contacting the contact plugs and the fill materials. Additional electronic devices and related systems and methods are also disclosed.
Abstract:
An electronic device comprising a lower deck and an upper deck adjacent to a source. Each of the lower deck and the upper deck comprise tiers of alternating conductive materials and dielectric materials. Each of the lower deck and the upper deck also comprise an array region and one or more non-array regions. Memory pillars are in the lower deck and the upper deck of the array region and the memory pillars are configured to be operably coupled to the source. Dummy pillars are in the upper deck of the one or more non-array regions and the dummy pillars are configured to be electrically isolated from the source. Another conductive material is in the upper deck and the lower deck of the one or more non-array regions. Additional electronic devices and related systems and methods of forming an electronic device are also disclosed.
Abstract:
A method of forming a microelectronic device includes forming a microelectronic device structure. The microelectronic device structure includes a stack structure having an alternating sequence of conductive structures and insulative structures, an upper stadium structure, a lower stadium structure, and a crest region defined between a first stair step structure of the upper stadium structure and a second stair step structure of the lower stadium structure. The stack structure further includes pillar structures extending through the stack structure and dielectric structures interposed between neighboring pillar structures within the upper stadium structure. The method further includes forming a trench in the crest region of the stack structure between two dielectric structures of the dielectric structures on opposing sides of another dielectric structure and filling the trench with a dielectric material. The trench partially overlaps with the dielectric structures.
Abstract:
An electronic device comprising lower and upper decks adjacent to a source. The lower and upper decks comprise tiers of alternating conductive materials and dielectric materials. Memory pillars in the lower and upper decks are configured to be operably coupled to the source. The memory pillars comprise contact plugs in the upper deck, cell films in the lower and upper decks, and fill materials in the lower and upper decks. The cell films in the upper deck are adjacent to the contact plugs and the fill materials in the upper deck are adjacent to the contact plugs. Dummy pillars are in a central region of the lower deck and the upper deck. The dummy pillars comprise an oxide material in the upper deck, the oxide material contacting the contact plugs and the fill materials. Additional electronic devices and related systems and methods are also disclosed.
Abstract:
Methods of forming semiconductor devices, memory cells, and arrays of memory cells include forming a liner on a conductive material and exposing the liner to a radical oxidation process to densify the liner. The densified liner may protect the conductive material from substantial degradation or damage during a subsequent patterning process. A semiconductor device structure, according to embodiments of the disclosure, includes features extending from a substrate and spaced by a trench exposing a portion of a substrate. A liner is disposed on sidewalls of a region of at least one conductive material in each feature. A semiconductor device, according to embodiments of the disclosure, includes memory cells, each comprising a control gate region and a capping region with substantially aligning sidewalls and a charge structure under the control gate region.
Abstract:
An electronic device comprising lower and upper decks adjacent to a source. The lower and upper decks comprise tiers of alternating conductive materials and dielectric materials. Memory pillars in the lower and upper decks are configured to be operably coupled to the source. The memory pillars comprise contact plugs in the upper deck, cell films in the lower and upper decks, and fill materials in the lower and upper decks. The cell films in the upper deck are adjacent to the contact plugs and the fill materials in the upper deck are adjacent to the contact plugs. Dummy pillars are in a central region of the lower deck and the upper deck. The dummy pillars comprise an oxide material in the upper deck, the oxide material contacting the contact plugs and the fill materials. Additional electronic devices and related systems and methods are also disclosed.
Abstract:
An electronic device comprising a lower deck and an upper deck adjacent to a source. Each of the lower deck and the upper deck comprise tiers of alternating conductive materials and dielectric materials. Each of the lower deck and the upper deck also comprise an array region and one or more non-array regions. Memory pillars are in the lower deck and the upper deck of the array region and the memory pillars are configured to be operably coupled to the source. Dummy pillars are in the upper deck of the one or more non-array regions and the dummy pillars are configured to be electrically isolated from the source. Another conductive material is in the upper deck and the lower deck of the one or more non-array regions. Additional electronic devices and related systems and methods of forming an electronic device are also disclosed.
Abstract:
Methods of forming semiconductor devices, memory cells, and arrays of memory cells include forming a liner on a conductive material and exposing the liner to a radical oxidation process to densify the liner. The densified liner may protect the conductive material from substantial degradation or damage during a subsequent patterning process. A semiconductor device structure, according to embodiments of the disclosure, includes features extending from a substrate and spaced by a trench exposing a portion of a substrate. A liner is disposed on sidewalls of a region of at least one conductive material in each feature. A semiconductor device, according to embodiments of the disclosure, includes memory cells, each comprising a control gate region and a capping region with substantially aligning sidewalls and a charge structure under the control gate region.
Abstract:
An electronic device comprising lower and upper decks adjacent to a source. The lower and upper decks comprise tiers of alternating conductive materials and dielectric materials. Memory pillars in the lower and upper decks are configured to be operably coupled to the source. The memory pillars comprise contact plugs in the upper deck, cell films in the lower and upper decks, and fill materials in the lower and upper decks. The cell films in the upper deck are adjacent to the contact plugs and the fill materials in the upper deck are adjacent to the contact plugs. Dummy pillars are in a central region of the lower deck and the upper deck. The dummy pillars comprise an oxide material in the upper deck, the oxide material contacting the contact plugs and the fill materials. Additional electronic devices and related systems and methods are also disclosed.
Abstract:
Methods, systems, and devices for three-dimensional memory array formation techniques are described. A memory device may include a stack of materials over a substrate. The memory device may include an array of first pillars and an array of second pillars extending at least partially through the stack of materials. One or more first pillars may be excluded from one or more columns of pillars of the array first pillars. The memory device may include dielectric material in a slit extending at least partially through the stack of materials. Based on the exclusion of the one or more first pillars, the slit may have a greater width at a first portion through the stack of materials than a second portion through the stack of materials. The dielectric material located in the slit may also have a greater width at the first portion than at the second portion.