Abstract:
Provided is a method for producing a piezoelectric thin-film element including a piezoelectric thin-film layer having good surface morphology and high crystallinity. The method includes forming a lower electrode layer on a substrate; forming a piezoelectric thin-film buffer layer on the lower electrode layer at a relatively low film-formation temperature; forming a piezoelectric thin-film layer on the piezoelectric thin-film buffer layer at a film-formation temperature that is higher than the film-formation temperature for the piezoelectric thin-film buffer layer; and forming an upper electrode layer on the piezoelectric thin-film layer.
Abstract:
A thermal infrared sensor for gas measurement including a sensing element. The sensing element includes a thermal detection layer that outputs an electric signal based on a temperature change, a light-receiving surface electrode disposed on a light-receiving surface of the thermal detection layer, and a back electrode disposed on the thermal detection layer opposite the light-receiving surface electrode. The light-receiving surface electrode has a periodic structure configured to selectively absorb infrared light having an absorption wavelength of a sample gas.
Abstract:
A thermal infrared sensor for gas measurement including a sensing element. The sensing element includes a thermal detection layer that outputs an electric signal based on a temperature change, a light-receiving surface electrode disposed on a light-receiving surface of the thermal detection layer, and a back electrode disposed on the thermal detection layer opposite the light-receiving surface electrode. The light-receiving surface electrode has a periodic structure configured to selectively absorb infrared light having an absorption wavelength of a sample gas.
Abstract:
A piezoelectric device that includes a support layer, a lower electrode, a piezoelectric film and an upper electrode on a substrate. In the substrate, a first opening is provided that penetrates through at least part of the substrate in a thickness direction of the substrate. A second opening that faces the support layer and the first opening is provided above the first opening. An opening area of the first opening is smaller than an opening area of the second opening.
Abstract:
Provided is a method for producing a piezoelectric thin-film element including a piezoelectric thin-film layer having good surface morphology and high crystallinity. The method includes forming a lower electrode layer on a substrate; forming a piezoelectric thin-film buffer layer on the lower electrode layer at a relatively low film-formation temperature; forming a piezoelectric thin-film layer on the piezoelectric thin-film buffer layer at a film-formation temperature that is higher than the film-formation temperature for the piezoelectric thin-film buffer layer; and forming an upper electrode layer on the piezoelectric thin-film layer.
Abstract:
A piezoelectric transformer that includes a vibration portion assembly having an output electrode, an output-side intermediate electrode, an input-side intermediate electrode, and an input electrode. The vibration portion assembly includes n vibration portions. The input electrode includes one to n input electrode pieces. The output electrode includes one to n output electrode pieces. Wiring lines are arranged such that voltages of opposite phases can be respectively applied to a first input electrode piece group of the input electrode pieces corresponding to odd-numbered vibration portions, and a second input electrode piece group of the input electrode pieces corresponding to even-numbered vibration portions. The second output electrode piece and the first output-side intermediate electrode piece are superposed with each other in the thickness direction. The first output electrode piece is not superposed with either of the first and second output-side intermediate electrode pieces in the thickness direction.
Abstract:
A piezoelectric device that includes a base member having an opening therein and an upper layer supported by the base member. The upper layer includes a vibration portion at a location corresponding to the opening in the base member. The vibration portion includes a lower electrode, an intermediate electrode and an upper electrode that are spaced apart from one another in a thickness direction of the piezoelectric device. The upper layer includes a first piezoelectric layer disposed so as to be at least partially sandwiched between the lower electrode and the intermediate electrode, and a second piezoelectric layer disposed so as to overlap with the first piezoelectric layer and so as to be at least partially sandwiched between the intermediate electrode and the upper electrode. The first piezoelectric layer and the second piezoelectric layer are different in relative permittivity in the thickness direction of the piezoelectric device.
Abstract:
A method for manufacturing a piezoelectric device that includes a substrate, a piezoelectric layer directly or indirectly supported by the substrate and arranged above the substrate, a heater, and a heater electrode for driving the heater. Moreover, the method includes forming the piezoelectric layer, the heater, and the heater electrode and subjecting the piezoelectric device to heat treatment with heat generated from the heater by driving the heater by feeding electric power to the heater electrode.
Abstract:
A thermal-type flow-rate sensor includes a substrate and a detection unit that is supported by the substrate and at least an upper surface of which is exposed to a flow of a fluid. The detection unit includes: an insulating layer, a heating element arranged on an upper surface of the insulating layer, an upstream temperature measurement element that is arranged on the upper surface of the insulating layer upstream of the heating element in the flow direction that includes a pyroelectric layer, and a downstream temperature measurement element arranged on the upper surface of the insulating layer so as to be positioned downstream of the heating element in the flow direction and that includes a pyroelectric layer.