Abstract:
One example discloses an apparatus for charge recycling between a first power-domain operating at a first voltage and a second power-domain operating at a second voltage, including: a first power-delivery circuit configured to supply the first voltage to the first power-domain; and a second power-delivery circuit coupled to receive power from both the first power-delivery circuit and the first power-domain; wherein the second power-delivery circuit is configured to supply the second voltage to the second power-domain.
Abstract:
A circuit for delivering power to a load from a wireless power supply comprises an inductor coil for placing in the electromagnetic field of an inductor coil of a supply and a switchable capacitor bank with capacitors switchable at least between a series and a parallel configuration. The voltage across the capacitor bank is used as a feedback control parameter for controlling the capacitor bank switching. A voltage regulator is used to supply the load with a constant voltage power supply derived from the capacitor bank output.
Abstract:
A circuit for delivering power to a load from a wireless power supply comprises an inductor coil for placing in the electromagnetic field of an inductor coil of a supply and a switchable capacitor bank with capacitors switchable at least between a series and a parallel configuration. The voltage across the capacitor bank is used as a feedback control parameter for controlling the capacitor bank switching. A voltage regulator is used to supply the load with a constant voltage power supply derived from the capacitor bank output.
Abstract:
An electronic device including a power source providing a source voltage, a capacitor, a primary regulator circuit, an always-on load that is active during a low power mode, and a recycle control circuit. The primary regulator circuit receives the source voltage and has an output that maintains a charge on the capacitor during an active mode. The primary regulator circuit does not contribute to a charge on the capacitor during the low power mode. The recycle control circuit includes a select circuit and a select control circuit. The select circuit selects, based on a control signal, between the voltage of the capacitor and at least one supply voltage including or otherwise developed using the source voltage to provide power to the always-on load during the low power mode. The select control circuit provides the control signal to control power provided to the always-on load during the low power mode.
Abstract:
One example discloses an apparatus for power management, including: a current sink/source sensor configured to monitor a power-supply to inter-power-domain sink/source-current and to generate a current mismatch signal if the power-supply to inter-power-domain sink/source-current exceeds a threshold range; and a current imbalance controller coupled to receive the current mismatch signal and configured to generate a set of power-domain control signals; wherein the set of power-domain control signals reduce an absolute value of the power-supply to inter-power-domain sink/source-current.
Abstract:
Aspects of the disclosure are directed to communications between respective power domains (circuitry) that may operate in a stacked arrangement in which the each domain operates over a different voltage range. A first circuit provides differential outputs that vary between first and second voltage levels, based on transitions of an input signal received from a first one of the power domains. First and second driver circuits are respectively coupled to the first and second differential outputs. A third driver circuit operates with the first and second circuits to level-shift the input signal from the first power domain to an output signal on a second power domain by driving an output circuit at the second voltage level in response to the input signal being at the first voltage level, and driving the output circuit at a third voltage level in response to the input signal being at the second voltage level.
Abstract:
Aspects of this disclosure are directed to level-shifting approaches with communications between respective circuits. As may be implemented in accordance with one or more embodiments characterized herein, a voltage level of communications passed between respective circuits are selectively shifted. Where the respective circuits operate under respective power domains that are shifted in voltage range relative to one another, the voltage level of the communications is shifted. This approach may, for example, facilitate power-savings for stacked circuits in which a low-level voltage of one circuit is provided as a high-level voltage for another circuit. When the respective circuits operate under a common power domain, the communications are passed directly between the respective circuits (e.g., bypassing any level-shifting, and facilitating fast communication).
Abstract:
Example apparatus for power-domain assignment, having: a first bus-to-switch interface; a second bus-to-switch interface; a first power-domain bus, coupled to the first bus-to-switch interface; a second power-domain bus, coupled to the second bus-to-switch interface. A set of I/O signal level shifters, coupled between the first and second power-domain buses; a switch including, a set of IP block power coupling outputs; a set of IP block I/O signal paths; and a selection signal input. The switch is coupled to the first and second bus-to-switch interfaces. Wherein, in response to receiving a first signal on the selection signal input, the switch is configure to couple the first power-domain bus to the set of IP block power coupling outputs; and wherein, in response to receiving a second signal on the selection signal input, the switch is configure to couple the second power-domain bus to the set of IP block power coupling outputs.
Abstract:
In accordance with an embodiment of the invention, an IC device is disclosed. In the embodiment, the IC device includes an array of bit cells of static random-access memory (SRAM), a multi-level digitization module configured to generate a value in a range of values from a bit cell in the array of bit cells, the range of values including more than two discrete values, an output buffer configured to store the generated values, and an error correction code (ECC) decoder configured to output error corrected values based on the stored values.
Abstract:
Aspects of this disclosure are directed to level-shifting approaches with communications between respective circuits. As may be implemented in accordance with one or more embodiments characterized herein, a voltage level of communications passed between respective circuits are selectively shifted. Where the respective circuits operate under respective power domains that are shifted in voltage range relative to one another, the voltage level of the communications is shifted. This approach may, for example, facilitate power-savings for stacked circuits in which a low-level voltage of one circuit is provided as a high-level voltage for another circuit. When the respective circuits operate under a common power domain, the communications are passed directly between the respective circuits (e.g., bypassing any level-shifting, and facilitating fast communication).