摘要:
The semiconductor device is formed according to the following steps. A TiN film 71 and a W film 72 are deposited on a silicon oxide film 64 including the inside of a via-hole 66 by the CVD method and thereafter, the W film 72 and TiN film 71 on the silicon oxide film 64 are etched back to leave only the inside of the via-hole 66 and form a plug 73. Then, a TiN film 74, Al-alloy film 75, and Ti film 76 are deposited on the silicon oxide film 64 including the surface of the plug 73 by the sputtering method and thereafter, the Ti film 76, Al-alloy film 75, and TiN film 74 are patterned to form second-layer wirings 77 and 78.
摘要:
The semiconductor device is formed according to the following steps. A TiN film 71 and a W film 72 are deposited on a silicon oxide film 64 including the inside of a via-hole 66 by the CVD method and thereafter, the W film 72 and TiN film 71 on the silicon oxide film 64 are etched back to leave only the inside of the via-hole 66 and form a plug 73. Then, a TiN film 74, Al-alloy film 75, and Ti film 76 are deposited on the silicon oxide film 64 including the surface of the plug 73 by the sputtering method and thereafter, the Ti film 76, Al-alloy film 75, and TiN film 74 are patterned to form second-layer wirings 77 and 78.
摘要:
The semiconductor device is formed according to the following steps. A TiN film 71 and a W film 72 are deposited on a silicon oxide film 64 including the inside of a via-hole 66 by the CVD method and thereafter, the W film 72 and TiN film 71 on the silicon oxide film 64 are etched back to leave only the inside of the via-hole 66 and form a plug 73. Then, a TiN film 74, Al-alloy film 75, and Ti film 76 are deposited on the silicon oxide film 64 including the surface of the plug 73 by the sputtering method and thereafter, the Ti film 76, Al-alloy film 75, and TiN film 74 are patterned to form second-layer wirings 77 and 78.
摘要:
A semiconductor device includes memory cells each having an MISFET for memory selection formed on one major surface of a semiconductor substrate and a capacitive element comprised of a lower electrode electrically connected at a bottom portion to one of a source and drain of the MISFET for memory selection via a first metal layer and an upper electrode formed on the lower electrode via a capacitive insulating film. The lower electrode has a thickness of 30 nm or greater at the bottom portion thereof. Sputtering with a high ionization ratio and high directivity, such as PCM, is adapted to the formation of the lower electrode to make only the bottom portion of a capacitor thicker.
摘要:
After an upper electrode protective film is formed such that it is in a firm contact with ruthenium film of the upper electrode without damaging the ruthenium film, the upper electrode is etched, thereby, a MIM capacitor is obtained in which leak current is not increased due to oxidation of the ruthenium film of the upper electrode.
摘要:
After an upper electrode protective film is formed such that it is in a firm contact with ruthenium film of the upper electrode without damaging the ruthenium film, the upper electrode is etched, thereby, a MIM capacitor is obtained in which leak current is not increased due to oxidation of the ruthenium film of the upper electrode.
摘要:
The new structure of a memory cell which enables avoiding the problem of a step without increasing the number of processes, the structure of a semiconductor integrated circuit in which a common part of the same substrate in a manufacturing process is increased and the structure of the semiconductor integrated circuit which allows measures for environment obstacles without increasing the number of processes are disclosed. Memory cell structure in which a capacitor is formed in the uppermost layer of plural metal wiring layers by connecting the storage node of the capacitor to a diffusion layer via plugs and pads is adopted. It is desirable that a dielectric film formed in a metal wiring layer under the uppermost layer and a supplementary capacitor composed of a storage node and a plate electrode are connected to the capacitor. It is also desirable that the plate electrode of the capacitor covers the chip.
摘要:
The new structure of a memory cell which enables avoiding the problem of a step without increasing the number of processes, the structure of a semiconductor integrated circuit in which a common part of the same substrate in a manufacturing process is increased and the structure of the semiconductor integrated circuit which allows measures for environment obstacles without increasing the number of processes are disclosed. Memory cell structure in which a capacitor is formed in the uppermost layer of plural metal wiring layers by connecting the storage node of the capacitor to a diffusion layer via plugs and pads is adopted. It is desirable that a dielectric film formed in a metal wiring layer under the uppermost layer and a supplementary capacitor composed of a storage node and a plate electrode are connected to the capacitor. It is also desirable that the plate electrode of the capacitor covers the chip.
摘要:
A semiconductor integrated circuit device of the invention is provided with a memory cell array portion and a peripheral circuit portions. In the memory cell array portion, a plurality of plugs which penetrate each of a plurality of interlayer insulating films and the sides of which are almost vertical are directly connected in sequence. In the peripheral circuit portion, a plurality of plugs are mutually connected through contact pads for wiring.
摘要:
A method of fabricating a semiconductor device having, for example, a memory cell array portion and a peripheral circuit portion is disclosed. By such a method, a first interlayer insulating film is formed on a semiconductor substrate, a first connection hole is formed by selectively removing a predetermined portion of the first interlayer insulating film, the sides of the first hole being substantially vertical to the bottom thereof, a first plug is formed by padding the first hole with a metallic film and, subsequently, a second interlayer insulating film is formed on the first insulating film, a second hole is formed by selectively removing a predetermined portion of the second interlayer insulating film, the sides of the second hole being substantially vertical to the bottom thereof, and a second plug aligned to be in direct connection with the first plug is formed by padding the second hole with the metallic film. A MOS transistor is formed on the semiconductor substrate before the first interlayer insulating film is formed and the first hole formed is extended to expose the diffused layer of the MOS transistor. The surfaces of both the first and second interlayer insulating films are smoothed by a chemical mechanical polishing (CMP) method. The process of padding the connection holes with the metallic film is effected through a CVD or selective CVD method.