Abstract:
A catalyst support material (D-CZMLA) with oxygen storage capacity corresponds to the formula vD:x(Ce1-wZrwO2):yM:zL:(1−v−x−y−z)Al2O3, wherein w is a molar ratio between 0.1-0.8 and v, x, y, and z are weight ratios, such that v is between 0.005-0.15, x is between 0.05-0.80, and y and z are between 0.001-0.10. M is an interactive promoter for oxygen storage, L is a stabilizer (L) for the Al2O3 support; and D is an oxidizing dopant. The catalyst support material can be incorporated into a wash coat that combines platinum group metals (PGM), an adhesive, and a mixture of (α)RE-Ce—ZrO2+(β)CZMLA+(1−α−β)RE-Al2O3, wherein RE-Ce—ZrO2 is a rare earth element stabilized ceria zirconia having a weight ratio (α) between 0-0.7; CZMLA is the doped catalyst support material having a weight ratio (β) between 0.2-1, such that (α+β)≦1; and RE-Al2O3 is rare earth element stabilized alumina having a weight ratio equal to (1−α−β).
Abstract:
A nanocrystal-sized cerium-zirconium mixed oxide material includes at least 30% by mass zirconium oxide; between 5% to 55% by mass cerium oxide; and a total of 25% or less by mass of at least one oxide of a rare earth metal selected from the group of lanthanum, neodymium, praseodymium, or yttrium. The nanocrystal-sized cerium-zirconium mixed oxide exhibits hierarchically ordered aggregates having a d50 particle size less than 1.5 μm and a total pore volume after calcination at a temperature of 600° C. or more that is at least 0.7 cm3/g with a fraction of pores between 2 nm to 10 nm being less than 15%. The nanocrystal-sized cerium-zirconium mixed oxide material is prepared using a co-precipitation method followed by milling the dried and calcined oxide material. The nanocrystal-sized cerium-zirconium mixed oxide material forms a particulate filter that may be used in an exhaust system arising from a gas or diesel engine.
Abstract:
A method of forming an AEI-type zeolite in a hydrothermal synthesis without the use of hydrogen fluoride (HF) and in the absence of any FAU zeolite Y. A gel composition formed upon using this method includes one or more sources of silica; one or more sources of alumina, one or more organic structure directing agents (OSDA); a source of alkali metal ions; and water. This gel composition is defined by the molar ratios of: SiO2/AI2O3 16:1 to 100:1; M2O/SiO2 0.15:1 to 0.30:1; ROH/SiO2 0.05:1 to 0.20:1; and H2O/SiO2 5:1 to 20:1; wherein M is the alkali metal ion and R is an organic moiety derived from the OSDA. This gel composition, after reacting at a temperature between 135° C. to about 180° C. for 15 hours to 168 hours forms the crystalline AEI-type zeolite having a silica to alumina ratio (SiO2:AI2O3) that is greater than 8:1.
Abstract:
A negative electrode for use in an electrochemical cell, such as a lithium-ion secondary battery that includes a positive electrode with an active material that acts as a cathode and a current collector; a negative electrode with an active material that acts as an anode and a current collector; a non-aqueous electrolyte; and a separator placed between the positive and negative electrodes. The negative electrode, includes an inorganic additive dispersed therein or applied as a coating thereon, the inorganic additive being in the form of one or more zeolites having a Si:Al ratio ranging from 1-50 that absorbs one or more of moisture, free transition metal ions, or hydrogen fluoride that become present in the cell. One or more of the cells may be combined in a housing to form a lithium-ion secondary battery.
Abstract:
A method of forming an SSZ-13 zeolite in a hydrothermal synthesis yields an SSZ-13 zeolite that exhibits a silica to alumina (SiO2:Al2O3) molar ratio (SAR) that is less than 16:1; has a morphology that includes one or more of cubic, spheroidal, or rhombic particles with a crystal size that is in the range of about 0.1 micrometer (μm) to 10 μm. This SSZ-13 also exhibits a Brönsted acidity that is in the range of 2.0 mmol/g to 3.4 mmol/g as measured by ammonia temperature programmed desorption. A catalyst formed by substituting a metal into the framework of the zeolite provides for low temperature light-off of the NOx conversion reactions, while maintaining substantial performance at higher temperatures demonstrating hydrothermal stability.
Abstract:
A cerium-zirconium oxide-based ionic conductor (CZOIC) material including zirconium oxide in an amount ranging from 5 wt. % up to 95 wt. %, cerium oxide in an amount ranging from 95 wt. % to 5 wt. %, and at least one oxide or a rare earth metal in an amount ranging from 30 wt. % or less, based on the overall mass of the CZOIC material. The CZOIC material exhibits a structure comprising one or more expanded unit cells and a plurality of crystallites having ordered nano-domains. The structure of the CZOIC material exhibits a crystal lattice defined by a d-value measured at multiple (hkl) locations using a SAED technique that exhibit distortions, such that the d-values for the same (hkl) location varies from about 2% to about 5% from the d-value measured for a reference cerium-zirconium material at the same (hkl) location.
Abstract:
An oxygen storage material (OSM) that exhibits enhanced redox properties, developed mesoporosity, and a resistance to sintering. The oxygen storage material (OSM) has a high oxygen storage capacity (i.e., OSC>1.5 mmol H2/g) and enhanced reducibility (i.e., bimodal TPR-H2 profile with two Tmax in the temperature range from 150° C. to 550° C.). The OSM is suitable for use as a catalyst and a catalyst support. The method of making the oxygen storage material comprises the preparation of a solution containing zirconium, cerium, rare earth and transition metal salts, followed by the co-precipitation of all constituent metal hydroxides with a base.
Abstract:
A crystalline Boehmite product and a method of forming said product is provided in which the crystalline Boehmite exhibits an average particle size (d50) that is less than 7,000 nanometers. This method comprises preparing an aqueous slurry by mixing together water, large aluminum oxide precursors, a highly dispersible Boehmite grade, and optionally, an organic dispersing agent; adjusting the pH of the slurry; heating the slurry for a predetermined duration of time; collecting the slurry to form a wet cake; and drying the wet cake to obtain the crystalline Boehmite product. The crystalline Boehmite product may be mixed with a plastic resin to form a flame retardant plastic mixture, which can be subjected to a conventional plastic processing method to form a flame retardant composite.
Abstract:
A cell for use in an electrochemical cell, such as a lithium-ion secondary battery that includes a positive electrode with an active material that acts as a cathode and a current collector; a negative electrode with an active material that acts as an anode and a current collector; a non-aqueous electrolyte; and a separator placed between the positive and negative electrodes. At least one of the cathode, the anode, the electrolyte, and the separator includes an inorganic additive in the form of a metal aluminate or a mixture of metal aluminates that absorbs one or more of moisture, free transition metal ions, or hydrogen fluoride (HF) that become present in the cell. One or more of the cells may be combined in a housing to form a lithium-ion secondary battery. The inorganic additive may also be incorporated as a coating applied to the internal wall of the housing.
Abstract:
A method of forming AEI-type zeolites in a hydrothermal synthesis without the use of hydrogen fluoride (HF) and in the presence of an FAU zeolite NaY with SAR ≤5, a Y zeolite with a SAR ≥5, or a combination thereof. A gel composition formed upon using this method includes one or more sources of silica, alumina, organic structure directing agents (OSDA), and alkali metal ions; zeolite seeds; and water. This gel composition is defined by the molar ratios of: SiO2/AI2O3 18:1 to 100:1; M2O/SiO2 0.15:1 to 0.30:1; ROH/SiO2 0.05:1 to 0.13:1; and H2O/SiO2 5:1 to 20:1; wherein M is the alkali metal ion and R is an organic moiety derived from the OSDA. This gel composition, after reacting at a temperature between 135° C. to about 200° C. for 10 hours to 168 hours forms the crystalline AEI-type zeolite having a silica to alumina ratio (SiO2:AI2O3) that is greater than 15:1.