摘要:
High-speed optoelectronic devices having a waveguide densely integrated with and efficiently coupled to a photodetector are fabricated utilizing methods generally compatible with CMOS processing techniques. In various implementations, the waveguide consists essentially of single-crystal silicon and the photodetector contains, or consists essentially of, epitaxially grown germanium or a silicon-germanium alloy having a germanium concentration exceeding about 90%.
摘要:
A system for dispersion compensation is provided including a plurality of optical cavities with each including a specific resonant frequency and resonant linewidth. At least one coupling element interconnects the optical cavities. The at least one coupling element defines the coupling strength between the cavities. The optical cavities are interconnected with the at least one coupled element that forms a multi-cavity structure. The multi-cavity structure generates appropriate dispersion properties for dispersion compensation purposes.
摘要:
A waveguide-semiconductor coupling device includes a waveguide structure that includes a multimode interferometer (MMI) structure so as to minimize the reflections of TE modes in the coupling device. A mesa structure is coupled to the waveguide structure so as to minimize the reflections of TM modes in the coupling device.
摘要:
Methods of tuning, switching or modulating, or, in general, changing the resonance of waveguide micro-resonators. Changes in the resonance can be brought about, permanently or temporarily, by changing the size of the micro-resonator with precision, by changing the local physical structure of the device or by changing the effective and group indices of refraction of the mode in the micro-resonator. Further changing the asymmetry of the index profile around a waveguide can alter the birefringence of the waveguide and allows one to control the polarization in the waveguide. This change in index profile may be used to change the polarization dependence or birefringence of the resonators.
摘要:
A photonic bandgap device includes a first mirror region including alternating layers of different materials. A second mirror region includes alternating layers of different materials. An air gap cavity region is positioned between the first mirror region and second region. The air gap cavity changes its thickness when a voltage is applied so that the device is tuned to a particular resonant wavelength.
摘要:
A method of reducing the scattering losses that involves smoothing of the core/cladding interface and/or change of waveguide geometry in high refractive index difference waveguides. As an example, the SOI-based Si/SiO2 waveguides are subjected to an oxidation reaction at high temperatures, after the waveguide patterning process. By oxidizing the rough silicon core surfaces after the patterning process, the core/cladding interfaces are smoothened, reducing the roughness scattering in waveguides.
摘要:
A solar cell that has a photoactive region; a Lambertian surface on the topside of the photoactive region; and a photonic crystal on the backside of the photoactive region.
摘要:
The invention provides processes for producing a very low dislocation density in heterogeneous epitaxial layers with a wide range of thicknesses, including a thickness compatible with conventional silicon CMOS processing. In a process for reducing dislocation density in a semiconductor material formed as an epitaxial layer upon a dissimilar substrate material, the epitaxial layer and the substrate are heated at a heating temperature that is less than about a characteristic temperature of melting of the epitaxial layer but greater than about a temperature above which the epitaxial layer is characterized by plasticity, for a first time duration. Then the epitaxial layer and the substrate are cooled at a cooling temperature that is lower than the about the heating temperature, for a second time duration. These heating and cooling steps are carried out a selected number of cycles to reduce the dislocation density of the epitaxial layer.
摘要:
The invention provides processes for producing a high-quality silicon dioxide layer on a germanium layer. In one example process, a layer of silicon is deposited on the germanium layer, and the silicon layer is exposed to dry oxygen gas at a temperature that is sufficient to induce oxidation of the silicon layer substantially only by thermal energy. In a further example process, the silicon layer is exposed to water vapor at a temperature that is sufficient to induce oxidation of the silicon layer substantially only by thermal energy. It can be preferred that the exposure to dry oxygen gas or to water vapor be carried out in an oxidation chamber at a chamber pressure that is no less than ambient pressure. In one example, the chamber pressure is above about 2 atm. The temperature at which the silicon layer is exposed to the dry oxygen gas is preferably above about 500° C., more preferably above about 600° C., even more preferably above about 700° C., and most preferably above about 800° C.
摘要:
A technique isdescribed for removing defects and disorder from crystalline layers and the epitaxial regrowth of such layers. The technique involves depositing short term bursts of energy over a limited spatial region of a material thereby annealing the otherwise damaged material and causing it to epitaxially regrow. Subsequent to the short term energy deposition, similar processing is sequentially effected on adjoining and overlapping regions such that a pattern is ultimately "written". This pattern forms a continuous region of essentially single crystal material.