Abstract:
This disclosure provides systems, methods and apparatus for modulating light to form an image on a display, as well as methods manufacturing such apparatus. The display apparatus includes dual-level shutter assemblies. Each dual-level shutter assembly includes front and rear light obstructing levels positioned adjacent to respective front and rear light blocking layers. The front and rear light blocking layers define apertures providing optical paths from a backlight to the front of the display. The dual-level shutters selectively obstruct these optical paths to generate an image.
Abstract:
This disclosure provides systems, methods and apparatus for shutter-based EMS light modulators controlled by electrode actuators that include a compliant inner beam electrode positioned between a movable beam electrode and a fixed beam electrode. A first voltage is applied to the movable beam electrode, and a sufficiently different voltage is applied to one of the compliant beam electrode and the fixed outer beam electrode. During actuation, the movable beam electrode is drawn towards the compliant inner beam electrode, while the combination of the movable beam electrode and the compliant inner beam electrode are further drawn to the fixed beam electrode.
Abstract:
This disclosure provides systems, methods and apparatus for incorporating tip-gap adjustment features (TGAF) in actuators of shutter assemblies. The TGAF are incorporated into a drive beam of the actuator during the formation of the shutter assembly over a mold. The TGAF are configured such that they develop a mechanical stress or stress gradient. When the shutter assembly is released from the mold, the stress or stress gradient in the TGAF bend the drive beam such that a tip-gap between the drive beam and a load beam of the actuator is reduced. The reduced tip-gap, in turn, reduces an actuation voltage needed to actuate the shutter assembly.
Abstract:
This disclosure provides systems, methods and apparatus for incorporating tip-gap adjustment features (TGAF) in actuators of shutter assemblies. The TGAF are incorporated into a drive beam of the actuator during the formation of the shutter assembly over a mold. The TGAF are configured such that they develop a mechanical stress or stress gradient. When the shutter assembly is released from the mold, the stress or stress gradient in the TGAF bend the drive beam such that a tip-gap between the drive beam and a load beam of the actuator is reduced. The reduced tip-gap, in turn, reduces an actuation voltage needed to actuate the shutter assembly.
Abstract:
The invention relates to an improved apparatus and method for the design and manufacture of MEMS anchoring structures for light modulators in order to address the stresses of beams mounted on them.
Abstract:
This disclosure provides systems, methods and apparatus for shutter-based EMS light modulators controlled by electrode actuators that include complementary sets of corrugations or teeth along the opposing beams of the actuators. The complementary sets of corrugations substantially engage one another when drawn together via an actuation voltage. By applying the actuation voltage across the opposing beams of such an actuator, the beams are drawn together both by the electromotive force resulting from the electric field acting between the portions of the beams that are substantially perpendicular to the direction of actuation of the actuator, and by fringing fields between the sides of the corrugations, which are substantially parallel to the direction of actuation. The additional fringing fields provide for increased electromotive force for a given input voltage.
Abstract:
This disclosure provides systems, methods and apparatus for generating images using dual-shutter shutter assemblies. Such shutter assemblies include two shutters that move over a common aperture to selectively obstruct the passage of light there through. In the closed position, portions of one of the shutters overlaps a portion of the other shutter to provide such light obstruction without the two shutters needing to come into contact.
Abstract:
This disclosure provides systems, methods and apparatus for controlling pixels of a display apparatus. An apparatus including a plurality of pixels can be controlled by a control matrix. The control matrix includes for each pixel a first transistor that has a first threshold voltage and a second transistor that has a second threshold voltage. A single data interconnect provides a common data voltage to the first and second transistors to control the states of corresponding first and second light modulators.
Abstract:
This disclosure provides systems, methods and apparatus for electromechanical systems having sidewalls beams. In one aspect, a device includes a substrate having a first electrode and a second electrode, and a movable shuttle monolithically integrated with the substrate, and having a first wall, a second wall, and a base. The first and second walls each have a first dimension at least four times larger than a second dimension. The first and second walls define substantially parallel vertical sides of the shuttle, and the base is positioned orthogonally to the first and second walls and forms a horizontal bottom of the shuttle, providing structural support to the first and second walls. The first wall and the first electrode define a first capacitor, and the second wall and the second electrode define a second capacitor.
Abstract:
This disclosure provides systems, methods and apparatus for modulating light to form an image on a display, as well as methods manufacturing such apparatus. The display apparatus includes shutters having asymmetric light obstructing portions extending out from opposing sides of a shutter aperture along an axis of motion of the shutter. Actuators move the shutters laterally along the axis of motion to move the shutter between fully closed, partially open, and fully open states to modulate light, thereby forming an image.