Silicon Nanoparticle Embedded Insulating Film Photodetector
    11.
    发明申请
    Silicon Nanoparticle Embedded Insulating Film Photodetector 审中-公开
    硅纳米颗粒嵌入式绝缘膜光电检测器

    公开(公告)号:US20090294885A1

    公开(公告)日:2009-12-03

    申请号:US12129434

    申请日:2008-05-29

    Abstract: A photodetector is provided with a method for fabricating a semiconductor nanoparticle embedded Si insulating film for photo-detection applications. The method provides a bottom electrode and introduces a semiconductor precursor and hydrogen. A thin-film is deposited overlying the substrate, using a high density (HD) plasma-enhanced chemical vapor deposition (PECVD) process. As a result, a semiconductor nanoparticle embedded Si insulating film is formed, where the Si insulating film includes either N or C elements. For example, the Si insulating film may be a non-stoichiometric SiOXNY thin-film, where (X+Y 0), or SiCX, where X

    Abstract translation: 光电检测器具有用于制造用于光检测应用的半导体纳米颗粒嵌入的Si绝缘膜的方法。 该方法提供底电极并引入半导体前体和氢。 使用高密度(HD)等离子体增强化学气相沉积(PECVD)工艺将薄膜沉积在衬底上。 结果,形成半导体纳米颗粒嵌入的Si绝缘膜,其中Si绝缘膜包括N或C元素。 例如,Si绝缘膜可以是非化学计量的SiOXNY薄膜,其中(X + Y <2和Y> 0)或SiCX,其中X <1。 半导体纳米颗粒是Si或Ge。 在形成半导体纳米颗粒嵌入的Si绝缘膜之后,进行退火处理。

    Silicon Oxide-Nitride-Carbide with Embedded Nanocrystalline Semiconductor Particles
    12.
    发明申请
    Silicon Oxide-Nitride-Carbide with Embedded Nanocrystalline Semiconductor Particles 有权
    具有嵌入式纳米晶半导体颗粒的氧化硅 - 氮化物 - 碳化物

    公开(公告)号:US20090217968A1

    公开(公告)日:2009-09-03

    申请号:US12467969

    申请日:2009-05-18

    Abstract: A solar call is provided along with a method for forming a semiconductor nanocrystalline silicon insulating thin-film with a tunable bandgap. The method provides a substrate and introduces a silicon (Si) source gas with at least one of the following source gases: germanium (Ge), oxygen, nitrogen, or carbon into a high density (HD) plasma-enhanced chemical vapor deposition (PECVD) process. A SiOxNyCz thin-film embedded with a nanocrystalline semiconductor material is deposited overlying the substrate, where x, y, z≧0, and the semiconductor material is Si, Ge, or a combination of Si and Ge. As a result, a bandgap is formed in the SiOxNyCz thin-film, in the range of about 1.9 to 3.0 electron volts (eV). Typically, the semiconductor nanoparticles have a size in a range of 1 to 20 nm.

    Abstract translation: 提供太阳能呼叫以及用于形成具有可调带隙的半导体纳米晶硅绝缘薄膜的方法。 该方法提供了一种衬底,并将硅(Si)源气体与以下源气体中的至少一种:锗(Ge),氧,氮或碳引入高密度(HD)等离子体增强化学气相沉积(PECVD) )过程。 嵌入纳米晶体半导体材料的SiOxNyCz薄膜沉积在衬底上,其中x,y,z> = 0,半导体材料是Si,Ge或Si和Ge的组合。 结果,在SiOxNyCz薄膜中形成的带隙在约1.9〜3.0电子伏特(eV)的范围内。 通常,半导体纳米颗粒的尺寸在1至20nm的范围内。

    Fabrication of a Semiconductor Nanoparticle Embedded Insulating Film Luminescence Device
    13.
    发明申请
    Fabrication of a Semiconductor Nanoparticle Embedded Insulating Film Luminescence Device 失效
    半导体纳米颗粒嵌入式绝缘膜发光器件的制造

    公开(公告)号:US20090058266A1

    公开(公告)日:2009-03-05

    申请号:US12267698

    申请日:2008-11-10

    CPC classification number: C23C16/30 C23C16/5096 C23C16/56

    Abstract: A method is provided for fabricating a semiconductor nanoparticle embedded Si insulating film for short wavelength luminescence applications. The method provides a bottom electrode, and deposits a semiconductor nanoparticle embedded Si insulating film, including the element of N, O, or C, overlying the bottom electrode. After annealing, a semiconductor nanoparticle embedded Si insulating film has a peak photoluminescence (PL) at a wavelength in the range of 475 to 750 nanometers.

    Abstract translation: 提供一种用于制造用于短波长发光应用的半导体纳米颗粒嵌入式Si绝缘膜的方法。 该方法提供底部电极,并沉积包含覆盖底部电极的N,O或C元素的半导体纳米颗粒嵌入的Si绝缘膜。 在退火之后,半导体纳米颗粒嵌入的Si绝缘膜在475至750纳米的波长范围内具有峰值光致发光(PL)。

    Method of making micro-pixelated fluid-assay precursor structure
    14.
    发明申请
    Method of making micro-pixelated fluid-assay precursor structure 有权
    制备微像素化流体测定前体结构的方法

    公开(公告)号:US20080084363A1

    公开(公告)日:2008-04-10

    申请号:US11827175

    申请日:2007-07-10

    Abstract: A method of producing a precursor, active-matrix, fluid-assay micro-structure including the steps of (1) utilizing low-temperature TFT and Si technology, establishing preferably on a glass or plastic substrate a matrix array of non-functionalized pixels, and (2) preparing at least one of these pixels for individual, digitally-addressed (a) functionalization, and (b) reading out, ultimately, of completed assay results.

    Abstract translation: 一种制备前体,活性基质,流体测定微结构的方法,包括以下步骤:(1)利用低温TFT和Si技术,优选在玻璃或塑料基材上建立非官能化像素的矩阵阵列, 和(2)准备用于个体,数字寻址(a)功能化的这些像素中的至少一个,以及(b)最终读出完成的测定结果。

    Oxide interface and a method for fabricating oxide thin films
    15.
    发明授权
    Oxide interface and a method for fabricating oxide thin films 有权
    氧化物界面和氧化物薄膜的制造方法

    公开(公告)号:US06902960B2

    公开(公告)日:2005-06-07

    申请号:US10295400

    申请日:2002-11-14

    CPC classification number: H01L29/66757 H01L29/4908 H01L29/66772

    Abstract: An oxide interface and a method for fabricating an oxide interface are provided. The method comprises forming a silicon layer and an oxide layer overlying the silicon layer. The oxide layer is formed at a temperature of less than 400° C. using an inductively coupled plasma source. In some aspects of the method, the oxide layer is more than 20 nanometers (nm) thick and has a refractive index between 1.45 and 1.47. In some aspects of the method, the oxide layer is formed by plasma oxidizing the silicon layer, producing plasma oxide at a rate of up to approximately 4.4 nm per minute (after one minute). In some aspects of the method, a high-density plasma enhanced chemical vapor deposition (HD-PECVD) process is used to form the oxide layer. In some aspects of the method, the silicon and oxide layers are incorporated into a thin film transistor.

    Abstract translation: 提供氧化物界面和制造氧化物界面的方法。 该方法包括形成硅层和覆盖硅层的氧化物层。 使用电感耦合等离子体源在低于400℃的温度下形成氧化物层。 在该方法的一些方面,氧化物层的厚度大于20纳米(nm),折射率在1.45和1.47之间。 在该方法的一些方面,通过等离子体氧化硅层形成氧化物层,以每分钟高达约4.4nm的速率产生等离子体氧化物(1分钟后)。 在该方法的某些方面,使用高密度等离子体增强化学气相沉积(HD-PECVD)工艺来形成氧化物层。 在该方法的一些方面,将硅和氧化物层结合到薄膜晶体管中。

    Method of making micro-pixelated fluid-assay precursor structure
    16.
    发明授权
    Method of making micro-pixelated fluid-assay precursor structure 有权
    制备微像素化流体测定前体结构的方法

    公开(公告)号:US08236571B2

    公开(公告)日:2012-08-07

    申请号:US11827175

    申请日:2007-07-10

    Abstract: A method of producing a precursor, active-matrix, fluid-assay micro-structure including the steps of (1) utilizing low-temperature TFT and Si technology, establishing preferably on a glass or plastic substrate a matrix array of non-functionalized pixels, and (2) preparing at least one of these pixels for individual, digitally-addressed (a) functionalization, and (b) reading out, ultimately, of completed assay results.

    Abstract translation: 一种制备前体,活性基质,流体测定微结构的方法,包括以下步骤:(1)利用低温TFT和Si技术,优选在玻璃或塑料基材上建立非官能化像素的矩阵阵列, 和(2)准备用于个体,数字寻址(a)功能化的这些像素中的至少一个,以及(b)最终读出完成的测定结果。

    High quantum efficiency silicon nanoparticle embedded SiOXNY luminescence device
    17.
    发明授权
    High quantum efficiency silicon nanoparticle embedded SiOXNY luminescence device 失效
    高量子效率硅纳米颗粒嵌入式SiOXNY发光器件

    公开(公告)号:US07902088B2

    公开(公告)日:2011-03-08

    申请号:US12249911

    申请日:2008-10-11

    Abstract: A method is provided for fabricating a high quantum efficiency silicon (Si) nanoparticle embedded SiOXNY film for luminescence (electroluminescence—EL and photoluminescence—PL) applications. The method provides a bottom electrode, and deposits a Si nanoparticle embedded non-stoichiometric SiOXNY film, where (X+Y 0), overlying the bottom electrode. The Si nanoparticle embedded SiOXNY film is annealed. The annealed Si nanoparticle embedded SiOXNY film has an extinction coefficient (k) of less than about 0.001 as measured at 632 nanometers (nm), and a PL quantum efficiency (PLQE) of greater than 20%.

    Abstract translation: 提供了一种用于制造用于发光(电致发光 - EL和光致发光 - PL)应用的高量子效率硅(Si)纳米颗粒嵌入的SiOXNY膜的方法。 该方法提供底部电极,并沉积嵌入非化学计量的SiOXNY膜的Si纳米颗粒,其中(X + Y <2和Y> 0)覆盖在底部电极上。 Si纳米颗粒嵌入的SiOXNY膜退火。 退火的Si纳米颗粒嵌入的SiOXNY膜具有在632纳米(nm)下测量的小于约0.001的消光系数(k),并且PL量子效率(PLQE)大于20%。

    Erbium-Doped Silicon Nanocrystalline Embedded Silicon Oxide Waveguide
    18.
    发明申请
    Erbium-Doped Silicon Nanocrystalline Embedded Silicon Oxide Waveguide 失效
    铒掺杂硅纳米晶体嵌入式氧化硅波导

    公开(公告)号:US20090232449A1

    公开(公告)日:2009-09-17

    申请号:US12112767

    申请日:2008-04-30

    Abstract: An erbium (Er)-doped silicon (Si) nanocrystalline embedded silicon oxide (SiOx) waveguide and associated fabrication method are presented. The method provides a bottom layer, and forms an Er-doped Si nanocrystalline embedded SiOx film waveguide overlying the bottom layer, having a minimum optical attenuation at about 1540 nanometers (nm). Then, a top layer is formed overlying the Er-doped SiOx film. The Er-doped SiOx film is formed by depositing a silicon rich silicon oxide (SRSO) film using a high density plasma chemical vapor deposition (HDPCVD) process and annealing the SRSO film. After implanting Er+ ions, the Er-doped SiOx film is annealed again. The Er-doped Si nanocrystalline SiOx film includes has a first refractive index (n) in the range of 1.46 to 2.30. The top and bottom layers have a second refractive index, less than the first refractive index.

    Abstract translation: 提出了一种铒(Er)掺杂的硅(Si)纳米晶体嵌入式氧化硅(SiOx)波导及其制造方法。 该方法提供底层,并且形成覆盖底层的掺​​铒Si纳米晶体的包含SiOx的薄膜波导,在约1540纳米(nm)处具有最小的光衰减。 然后,形成覆盖Er掺杂的SiOx膜的顶层。 通过使用高密度等离子体化学气相沉积(HDPCVD)方法沉积富硅氧化物(SRSO)膜并退火SRSO膜来形成Er掺杂的SiOx膜。 在注入Er +离子后,再次对Er掺杂的SiOx膜进行退火。 掺铒Si纳米晶SiOx膜的第一折射率(n)在1.46〜2.30的范围内。 顶层和底层具有小于第一折射率的第二折射率。

    Silicon oxide thin-films with embedded nanocrystalline silicon
    19.
    发明授权
    Silicon oxide thin-films with embedded nanocrystalline silicon 有权
    具有嵌入式纳米晶硅的氧化硅薄膜

    公开(公告)号:US07544625B2

    公开(公告)日:2009-06-09

    申请号:US11418273

    申请日:2006-05-04

    Abstract: A method is provided for forming a silicon oxide (SiOx) thin-film with embedded nanocrystalline silicon (Si). The method deposits SiOx, where x is in the range of 1 to 2, overlying a substrate, using a high-density (HD) plasma-enhanced chemical vapor deposition (PECVD) process. As a result, the SiOx thin-film is embedded with nanocrystalline Si. The HD PECVD process may use an inductively coupled plasma (ICP) source, a substrate temperature of less than about 400° C., and an oxygen source gas with a silicon precursor. In one aspect, a hydrogen source gas and an inert gas are used, where the ratio of oxygen source gas to inert gas is in the range of about 0.02 to 5. The SiOx thin-film with embedded nanocrystalline Si typically has a refractive index in the range of about 1.6 to 2.2, with an extinction coefficient in the range of 0 to 0.5.

    Abstract translation: 提供了一种用嵌入式纳米晶硅(Si)形成氧化硅(SiOx)薄膜的方法。 该方法使用高密度(HD)等离子体增强化学气相沉积(PECVD)工艺沉积SiO x,其中x在1至2的范围内,覆盖在衬底上。 结果,SiO x薄膜埋入有纳米晶体Si。 HD PECVD工艺可以使用电感耦合等离子体(ICP)源,小于约400℃的衬底温度,以及具有硅前体的氧源气体。 一方面,使用氢源气体和惰性气体,其中氧源气体与惰性气体的比例在约0.02至5的范围内。具有嵌入的纳米晶体硅的SiO x薄膜通常具有折射率 约1.6至2.2的范围,消光系数在0至0.5的范围内。

    High Quantum Efficiency Silicon Nanoparticle Embedded SiOxNy Luminescence Device
    20.
    发明申请
    High Quantum Efficiency Silicon Nanoparticle Embedded SiOxNy Luminescence Device 失效
    高量子硅纳米颗粒嵌入式SiOxNy发光器件

    公开(公告)号:US20090033207A1

    公开(公告)日:2009-02-05

    申请号:US12249911

    申请日:2008-10-11

    Abstract: A method is provided for fabricating a high quantum efficiency silicon (Si) nanoparticle embedded SiOXNY film for luminescence (electroluminescence—EL and photoluminescence—PL) applications. The method provides a bottom electrode, and deposits a Si nanoparticle embedded non-stoichiometric SiOXNY film, where (X+Y 0), overlying the bottom electrode. The Si nanoparticle embedded SiOXNY film is annealed. The annealed Si nanoparticle embedded SiOXNY film has an extinction coefficient (k) of less than about 0.001 as measured at 632 nanometers (nm), and a PL quantum efficiency (PLQE) of greater than 20%.

    Abstract translation: 提供了一种用于制造用于发光(电致发光 - EL和光致发光 - PL)应用的高量子效率硅(Si)纳米颗粒嵌入的SiOXNY膜的方法。 该方法提供底部电极,并沉积嵌入非化学计量的SiOXNY膜的Si纳米颗粒,其中(X + Y <2和Y> 0)覆盖在底部电极上。 Si纳米颗粒嵌入的SiOXNY膜退火。 退火的Si纳米颗粒嵌入的SiOXNY膜具有在632纳米(nm)下测量的小于约0.001的消光系数(k),并且PL量子效率(PLQE)大于20%。

Patent Agency Ranking