Abstract:
A two step process for the destruction of a precursor material using a steam plasma in a three zone reactor wherein the precursor material is hydrolyzed as a first step in the high temperature zone of the reactor, followed by a second step of medium temperature oxidation of the reactant stream in the combustion zone of the reactor where combustion oxygen or air is injected and immediate quenching of the resulting gas stream to avoid the formation of unwanted by-products. A related apparatus includes a non transferred direct current steam plasma torch, an externally cooled three zone steam plasma reactor means for introducing the precursor material into the plasma plume of the plasma torch, means for introducing the combustion air or oxygen into the combustion zone, means for exiting the reactant mixture from the reactor and means for quenching the reactant mixture located at the exit end of the reactor.
Abstract:
In the present pelletizing apparatus, the induration of iron ore concentrate pellets is achieved in a tunnel furnace heated by plasma torches, wherein the generation of CO2 by the conventional iron ore pelletizing processes is reduced by using electricity powered plasma torches instead of burning natural gas, heavy oil or pulverized coal in burners, thereby reducing considerably industrial pollution of the atmosphere.
Abstract:
An apparatus and a process for the production at high capacity of high purity powders from a wire using a combination of plasma torches and induction heating are disclosed. The process has good productivity by providing a preheating system. A mechanism is included in the apparatus, which allows adjusting the position of the plasma torches and their angle of attack with respect to the wire, permitting to control the particle size distribution.
Abstract:
The present application relates to a plasma atomization process and apparatus for producing metallic powders from at least one wire/rod feedstock. In the process, an electric arc is applied to the at least one wire/rod feedstock to melt the same. A plasma torch is employed to generate a supersonic plasma stream at an apex at which the electric arc is transferred to the at least one wire/rod feedstock to atomize the molten wire/rod feedstock into particles. A downstream cooling chamber solidifies the particles into the metallic powders. An anti-satellite diffuser is employed to prevent recirculation of the powders in order to avoid satellite formation. In an apparatus where two wires are fed, one wire serves as an anode, and the other as a cathode.
Abstract:
An apparatus for producing metallic powders from molten feedstock includes a heating source for melting a solid feedstock into a molten feed, and a crucible for containing the molten feed. A liquid feed tube is also provided to feed the molten feed as a molten stream. A plasma source delivers a plasma stream, with the plasma stream being adapted to be accelerated to a supersonic N velocity and being adapted : to then impact the molten stream for producing metallic powders. The feed tube extends from the crucible to a location where a supersonic plasma plume atomizes the molten stream. The plasma source includes at least two plasma torches provided with at least one supersonic nozzle aimed towards the molten stream. The multiple plasma torches are disposed symmetrically about the location where the supersonic plasma plumes atomize the molten stream, such as in a ring-shaped configuration.
Abstract:
An apparatus for the destruction of a precursor material includes a steam plasma reactor having a high temperature zone and a combustion zone. The high temperature zone is adapted for hydrolyzing the precursor material, whereas the combustion zone is adapted to effect medium temperature oxidation of the reactant stream where combustion oxygen or air is injected. A quenching unit is provided at an exit end of the reactor for quenching a resulting gas stream to avoid the formation of unwanted by-products.
Abstract:
In a fossil fuel waste incineration or plasma gasification process, waste heat generated by combustion of waste is captured by a heat transfer fluid and conveyed to an Organic Rankine Cycle (ORC) for energy recovery. In the case of a fossil fuel-fired waste incineration system, the heat transfer fluid captures waste heat from a double-walled combustion chamber, a heat exchanger being used to cool the hot process exhaust (gas cooler). In the case of a plasma waste gasification system, the heat transfer fluid captures waste heat from a plasma torch, a gasification chamber and combustion chamber cooling jackets as well as any other high-temperature components requiring cooling, and then a heat exchanger used to cool the hot process exhaust (gas cooler). The heat exchanger may take on several configurations, including plate or shell and tube configurations.
Abstract:
A two step process for the destruction of a precursor material using a steam plasma in a three zone reactor wherein the precursor material is hydrolyzed as a first step in the high temperature zone of the reactor, followed by a second step of medium temperature oxidation of the reactant stream in the combustion zone of the reactor where combustion oxygen or air is injected and immediate quenching of the resulting gas stream to avoid the formation of unwanted by-products. A related apparatus includes a non transferred direct current steam plasma torch, an externally cooled three zone steam plasma reactor means for introducing the precursor material into the plasma plume of the plasma torch, means for introducing the combustion air or oxygen into the combustion zone, means for exiting the reactant mixture from the reactor and means for quenching the reactant mixture located at the exit end of the reactor.
Abstract:
In the present pelletizing apparatus, the induration of iron ore concentrate pellets is achieved in a tunnel furnace heated by plasma torches, wherein the generation of by the conventional iron ore pelletizing processes is reduced by using electricity powered plasma torches instead of burning natural gas, heavy oil or pulverized coal in burners, thereby reducing considerably industrial pollution of the atmosphere.
Abstract:
In a fossil fuel waste incineration or plasma gasification process, waste heat generated by combustion of waste is captured by a heat transfer fluid and conveyed to an Organic Rankine Cycle (ORC) for energy recovery. In the case of a fossil fuel-fired waste incineration system, the heat transfer fluid captures waste heat from a double-walled combustion chamber, a heat exchanger being used to cool the hot process exhaust (gas cooler). In the case of a plasma waste gasification system, the heat transfer fluid captures waste heat from a plasma torch, a gasification chamber and combustion chamber cooling jackets as well as any other high-temperature components requiring cooling, and then a heat exchanger used to cool the hot process exhaust (gas cooler). The heat exchanger may take on several configurations, including plate or shell and tube configurations.