Abstract:
An apparatus for detecting at least one substance present in a fluid flow includes at least one field effect transistor which acts as a measuring sensor, and at least one field effect transistor which acts as a reference element, the field effect transistors each having at least one source electrode, one drain electrode, and one gate electrode. The gate electrode of the field effect transistor which acts as the measuring sensor is sensitive to the at least one substance to be detected, and the gate electrode of the field effect transistor which acts as the reference element is essentially insensitive to the at least one substance to be detected. The source electrode of one of the field effect transistors and the drain electrode of the other of the field effect transistors are connected to one another and to a signal line. A method for detecting at least one substance present in a fluid flow by using the apparatus is also described, a potential of 0 volt being applied to the signal line and the current flowing on the signal line being measured.
Abstract:
An electronic component is described that includes a metallic layer on a substrate that is made of a semiconductor material and a diffusion barrier layer that is made of a material that has a small diffusion coefficient for the metal of the metallic layer which is formed between the metallic layer and the substrate.
Abstract:
The present invention relates to a method for passivating a semiconductor component having at least one chemosensitive electrode that is blinded by the application of a glass layer. The present invention also relates to a device for detecting at least one substance included in a fluid stream, including at least one semiconductor component acting as a measuring sensor as well as at least one semiconductor component acting as a reference element, the semiconductor components each having a chemosensitive electrode, and the chemosensitive electrode of the semiconductor component acting as the reference element being passivated. For the passivation, a glass layer may be applied at least to the chemosensitive electrode of the semiconductor component acting as reference element.
Abstract:
An electronic component includes at least one patterned layer of an electrically conductive material on a substrate, a protective layer of a second material being deposited on the patterned layer of the electrically conductive material. The second material is baser than the electrically conductive material of the patterned layer. In a method for producing the electronic component, the patterned layer of the electrically conductive material is deposited on the substrate in a first step, and the protective layer of the second material, which is baser than the electrically conductive material of the patterned layer, is deposited on the patterned layer in a second step.
Abstract:
In a method for operating a semiconductor gas sensor, the gas sensor including at least one gas-sensitive electrode, the method may provide for impression of a voltage sequence on the gas-sensitive electrode. The operation may take place in a measuring cycle which is subdivided into at least one initialization phase and at least one subsequent measuring phase, a first voltage sequence being impressed on the gas-sensitive electrode during the initialization phase, a second voltage sequence being impressed on the gas-sensitive electrode during the measuring phase, and the first voltage sequence differing from the second voltage sequence. A semiconductor gas sensor may be provided for implementing the method according to the invention, and a method may relate to the use of such a sensor.
Abstract:
An electronic component has a metallic layer on a substrate made of a semiconductor material, a diffusion barrier layer that is made of a material that has a small diffusion coefficient for the metal of the metallic layer being formed between the metallic layer and the substrate.
Abstract:
An outer part for a device which is attachable thereto as a housing and/or an attachment part, a first reflective surface and a second reflective surface being formed on the outer part so that at least one signal emitted by an optical and/or acoustic source is directly or indirectly deflectable onto at least one detector surface of an optical and/or acoustic detector, an optical path being configured as a cavern or continuous recess in the outer part or as a depression of a boundary surface of the outer part, the optical path having at least one opening via which at least one substance is transferable into the optical path, and the at least one signal being deflectable into the optical path to the second reflective surface which is formed at a second end of the optical path with the first reflective surface at a first end of the optical path.
Abstract:
A gas sensor and method for ascertaining the concentration of one or more gas species, in the exhaust gas of an internal combustion engine. The gas sensor includes a measuring cell having a gas inlet, a gas outlet, a catalysis area, and an analysis area. The sensor also includes a catalytic converter for catalyzing a reaction of a first gas species to form a second gas species in the catalysis area, and a gas analyzer for spectroscopically measuring the concentration of the second gas species in the analysis area. Through the catalytic converter, a first gas species may be converted into a second gas species whose absorption and/or scattering wavelength(s) are within the emission wavelength range of semiconductor radiation sources, so that the gas analyzer may have a semiconductor radiation source.
Abstract:
The present invention relates to a method for passivating a semiconductor component having at least one chemosensitive electrode that is blinded by the application of a glass layer. The present invention also relates to a device for detecting at least one substance included in a fluid stream, including at least one semiconductor component acting as a measuring sensor as well as at least one semiconductor component acting as a reference element, the semiconductor components each having a chemosensitive electrode, and the chemosensitive electrode of the semiconductor component acting as the reference element being passivated. For the passivation, a glass layer may be applied at least to the chemosensitive electrode of the semiconductor component acting as reference element.