Abstract:
Provided is a nanoparticle polymer in which a plurality of core particles that are linked to each other by a linker are surrounded by a metal-chalcogenide compound shell. The nanoparticle polymer may include a nanoparticle polymer including a core assembly including at least two nanoparticles connected to each other by a linker; and a shell that surrounds a surface of the core assembly and includes a metal-chalcogenide compound.
Abstract:
A nanoparticle multilayer thin film is provided in which nanoparticles which are not electrically insulated from each other are spaced apart from one another at a reduced distance. The nanoparticle multilayer film includes: at least one first nanoparticle layer including first nanoparticles that are surface-modified with a cationic metal-chalcogenide compound; and at least one second nanoparticle layer including second nanoparticles that are surface-modified with an anionic metal-chalcogenide compound, wherein the first nanoparticle layer and the second nanoparticle layer are alternately stacked upon one another.
Abstract:
An optical filter may include a first reflector and a second reflector. The first reflector may include a plurality of first gratings having a first sub-wavelength dimension and being arranged to recur at a first interval in a first direction. The second reflector may be spaced apart from the first reflector and include a plurality of second gratings having a second sub-wavelength dimension and arranged to recur at a second interval in a direction parallel to the first direction. The first reflector and the second reflector may include different materials or different geometric structures from each other. Accordingly, it is easy to adjust the transmission wavelength characteristics of the optical filter.
Abstract:
A photoelectric conversion device may include a substrate, a photoactive layer disposed on the substrate, and a first electrode and a second electrode respectively connected to corresponding edges of the photoactive layer. The photoactive layer may include a first oxide semiconductor layer on the substrate, and a plurality of quantum dot layers and a plurality of second oxide semiconductor layers that are alternately formed on the first oxide semiconductor layer.
Abstract:
An optical filter may include a first reflector and a second reflector. The first reflector may include a plurality of first gratings having a first sub-wavelength dimension and being arranged to recur at a first interval in a first direction. The second reflector may be spaced apart from the first reflector and include a plurality of second gratings having a second sub-wavelength dimension and arranged to recur at a second interval in a direction parallel to the first direction. The first reflector and the second reflector may include different materials or different geometric structures from each other. Accordingly, it is easy to adjust the transmission wavelength characteristics of the optical filter.
Abstract:
A quantum dot light emitting device includes a grating device which includes a grating region that has a particular grating interval, and a quantum dot layer located above the grating region. The device provides high-purity color light based on a selection of a wavelength band by the grating region in correspondence with a wavelength band of light emitted from the quantum dot layer.
Abstract:
Provided are photoelectric devices and electronic apparatuses including the photoelectric devices. A photoelectric device may include a photoactive layer, the photoactive layer may include a nanostructure layer configured to generate a charge in response to light and a semiconductor layer adjacent to the nanostructure layer. The nanostructure layer may include one or more quantum dots. The semiconductor layer may include an oxide semiconductor. The photoelectric device may include a first electrode and a second electrode that contact different regions of the photoactive layer. A number of the photoelectric conversion elements may be arranged in a horizontal direction or may be stacked in a vertical direction. The photoelectric conversion elements may absorb and thereby detect light in different wavelength bands without the use of color filters.
Abstract:
An anion exchange method using an anion exchange precursor based on a metal-chalcogenide compound is provided. The anion exchange method includes exchanging an anionic element of a nanoparticle with an element X of an anion exchange precursor represented by Na2Xn via a reaction between the anion exchange precursor and the nanoparticle in the presence of a reaction medium, wherein X is at least one element selected from the group consisting of Se, S, and Te, and n is an integer from 2 to 10.
Abstract translation:提供了使用基于金属 - 硫族化合物化合物的阴离子交换前体的阴离子交换方法。 阴离子交换方法包括在反应介质存在下,通过阴离子交换前体和纳米颗粒之间的反应,将纳米颗粒的阴离子元素与由Na 2 X n表示的阴离子交换前体的元素X交换,其中X是至少一个元素 选自Se,S和Te组成的组,n为2〜10的整数。
Abstract:
A chalcogen element can be effectively dissolved in a non-explosive hydrazine-based solvent by the aid of sodium in a non-explosive hydrazine-based solvent. Therefore, a precursor solution for forming a metal chalcogenide film containing as a solvent a non-explosive hydrazine-based solvent which is less poisonous than hydrazine and which is free of explosiveness is provided. A metal chacogenide thin film may be formed employing the metal chalcogenide precursor solution.
Abstract:
A light sensing device includes a channel layer, a first electrode provided on a first surface of the channel layer, a second electrode provided on the first surface of the channel layer and spaced apart from the first electrode, and a light absorption layer provided on the channel layer between the first electrode and the second electrode and configured to absorb infrared rays, where the light absorption layer includes a doped semiconductor layer.