Abstract:
A light emitting device including a light emitting structure disposed on one surface of a substrate and a transflective portion disposed on the other surface of the substrate. The transflective portion and the substrate have different indexes of refraction from one another.
Abstract:
A chip-scale package type light emitting diode includes a first conductivity type semiconductor layer, a mesa, a second conductivity type semiconductor layer, a transparent conductive oxide layer, a dielectric layer, a lower insulation layer, a first pad metal layer, and a second pad metal layer, an upper insulation layer. The upper insulation layer covers the first pad metal layer and the second pad metal layer, and includes a first opening exposing the first pad metal layer and a second opening exposing the second pad metal layer. The openings of the dielectric layer include openings that have different sizes from one another.
Abstract:
A light emitting device includes a first light emitting cell, a second light emitting cell, a first conductive pattern, a second conductive pattern, and a connection pattern. The connection pattern includes contact portions electrically connected to a second conductivity type semiconductor layer of the first light emitting cell and a first conductivity type semiconductor layer of the second light emitting cell. At an edge of a first region facing the second light emitting cell, one contact portion of the first conductive pattern is disposed between the contact portions of the connection pattern electrically connected to the second conductivity type semiconductor layer of the first light emitting cell, and one contact portion of the first conductive pattern is open outwards.
Abstract:
A light-emitting element includes a light-emitting structure including a first conductive semiconductor layer, a second conductive semiconductor layer, and an active layer interposed between the first conductive semiconductor layer and the second conductive semiconductor layer; a first contact electrode and a second contact electrode located on the light-emitting structure, and respectively making ohmic contact with the first conductive semiconductor layer and the second conductive semiconductor layer; an insulation layer for covering a part of the first contact electrode and the second contact electrode so as to insulate the first contact electrode and the second contact electrode; a first electrode pad and a second electrode pad electrically connected to each of the first contact electrode and the second contact electrode; and a radiation pad formed on the insulation layer, and radiating heat generated from the light-emitting structure.
Abstract:
A light emitting diode including a first semiconductor layer, a mesa disposed thereon and including a second semiconductor layer and an active layer, an ohmic reflection layer disposed on the mesa to form an ohmic contact with the second semiconductor layer, a lower insulation layer covering the mesa and the ohmic reflection layer and partially exposing the first semiconductor layer and the ohmic reflection layer, a first pad metal layer disposed on the lower insulation layer and electrically connected to the first semiconductor layer, a metal reflection layer disposed on the lower insulation layer and laterally spaced apart from the first pad metal layer, and an upper insulation layer covering the first pad metal layer and the metal reflection layer, and having a first opening exposing the first pad metal layer, in which at least a portion of the metal reflection layer covers a side surface of the mesa.
Abstract:
A light emitting diode having improved light efficiency and enhanced reflectivity of a device by forming an insulating reflective part on a reflective electrode formed on the upper surface of a mesa. A mesa exposing part is formed on the outer periphery and/or in the interior region of the reflective electrode to expose a predetermined area of the upper surface of the mesa such that reflection at the mesa exposing part is performed by the insulating reflective part.
Abstract:
A light emitting device including a light emitting structure disposed on one surface of a substrate and a transflective portion disposed on the other surface of the substrate. The transflective portion and the substrate have different indexes of refraction from one another.