Abstract:
An apparatus includes a circuit that has a normal mode of operation and a low-power mode of operation. The circuit consumes more power in the normal mode of operation than in the low-power mode of operation. The apparatus further includes a power-supply circuit. The power-supply circuit provides a normal supply voltage to the circuit in the normal mode of operation. The power-supply circuit includes a non-linear circuit to provide a compressed supply voltage to the circuit in the low-power mode of operation, wherein the normal supply voltage is greater than the compressed supply voltage.
Abstract:
An integrated circuit (IC) includes a first circuit that is powered by a first supply voltage, and a second circuit that is powered by a second supply voltage. The second supply voltage has a lower level than the first supply voltage. The IC further includes a power management circuit. The power management circuit includes a switch-mode DC-DC regulator that is coupled to a plurality of pins of the IC in a pre-defined configuration. The power management circuit provides the first and second supply voltages to power up the IC in a default configuration without knowledge of the pre-defined configuration.
Abstract:
An apparatus includes a first set of circuits adapted to operate in a first mode of operation of the apparatus. The apparatus further includes a second set of circuits adapted to operate in a second mode of operation of the apparatus, where a power consumption of the apparatus is lower in the second mode of operation of the apparatus than in the first mode of operation of the apparatus. The apparatus also includes a charge pump adapted to convert a first supply voltage of the apparatus to a second supply voltage, and the second supply voltage powers the second set of circuits.
Abstract:
An apparatus includes an integrated circuit (IC). The IC includes a current source, to sink or source an output current, in response to a control signal, and a switch-capacitor resistor coupled to the current source. The apparatus further includes a controller coupled to derive the control signal from a voltage across the switch-capacitor resistor, the controller further to provide a switch control signal to the switch-capacitor resistor.
Abstract:
A system for communicating information includes one device that communicates information via a communication link. The system also includes a second device to communicate information via the communication link. The second device includes a receiver to receive information from the communication link. The second device also includes an oscillator that provides at least one timing signal to the receiver. The oscillator is disabled when the communication link is in an idle state. The oscillator is enabled when the communication link is in a non-idle state.
Abstract:
An apparatus includes analog or mixed-signal circuitry that operates in response to a first signal, and digital circuitry that operates in response to a second signal. The apparatus further includes a signal retiming circuit. The signal retiming circuit retimes an output signal of a digital signal source to reduce interference between the digital circuitry and the analog or mixed-signal circuitry by retiming edges of the output signal of the digital signal source to fall on cycle boundaries of the first signal.
Abstract:
An apparatus includes a communication circuit coupled to a communication link, a wakeup detector, and a power control circuit. The communication circuit has a first state and a second state. The power consumption of the communication circuit is lower in the second state than in the first state. The wakeup detector is coupled to the communication link. The wakeup detector generates a wakeup signal to cause the communication circuit to make a transition from the second state to the first state in response to an occurrence of an event on the communication link. The power control circuit selectively supplies power to the communication circuit in response to the wakeup signal.
Abstract:
An apparatus includes an integrated circuit (IC). The IC includes a differencing comparator. The differencing comparator receives a differential input signal. The differencing comparator compares the differential input signal to a threshold value. The differencing comparator includes a transconductance circuit coupled to receive the differential input signal and to provide a differential output signal.
Abstract:
An apparatus includes a circuit that includes a communication circuit to communicate information via a link using two communication modes. In the first communication mode, the communication circuit communicates information using a communication protocol. In the second communication mode, the communication circuit communicates information without triggering communication using the communication protocol.
Abstract:
An apparatus includes a temperature measurement circuit. The temperature measurement circuit includes a bandgap circuit including an amplifier having an offset voltage that is compensated by using a set of trimming bits. The bandgap circuit provides first and second voltages related to a temperature to be measured. The temperature measurement circuit further includes a measuring circuit coupled to receive the first and second voltages. The measuring circuit further includes a comparator coupled to receive the first and second voltages, wherein the measuring circuit derives a temperature measurement from the first and second voltages.