Abstract:
A semiconductor integrated circuit system includes a phase-change line including a first phase-change area constituting a first memory cell and a second phase-change area constituting a second memory cell, a write current providing unit configured to phase-change a selected one of the first and second phase-change areas, and a phase-change compensation unit configured to restore the other of the first and second phase-change areas by compensating for a dummy phase-change caused in the other phase-change area due to a phase-change of the selected phase-change area.
Abstract:
The present invention relates to a variable resistance memory device and a method for forming the same. A variable resistance memory device according to the present invention includes a first electrode; a second electrode spaced apart from the first electrode; a resistance variable layer and a metal-insulator transition layer provided between the first electrode and the second electrode; and a heat barrier layer provided (i) between the first electrode and the metal-insulator transition layer, (ii) between the metal-insulator transition layer and the resistance variable layer, or (iii) between the second electrode and the metal-insulator transition layer. The present invention prevents dissipation of heat generated in the metal-insulator transition layer using a thermal boundary resistance (TBR) phenomenon, and thus current and voltage to operate the variable resistance memory device can be reduced.
Abstract:
A semiconductor device may include: a first conductive line; a second conductive line disposed over the first conductive line and spaced apart from the first conductive line; a memory cell disposed between the first conductive line and the second conductive line and including a memory layer; and one or more shield layers disposed at least one of at a first location over the memory layer or a second location under the memory layer, the one or more shield layers including an MXene material.
Abstract:
In an embodiment, a substrate that includes a cell region and a dummy region is provided. Lower interconnection structures are formed in the cell region and the dummy region. One or more first multilayered structure patterns are formed in the cell region and one or more second multilayered structure patterns in the dummy region over the lower interconnection structures. The first multilayered structure patterns and second multilayered structure patterns extend in a first direction. Each of the second multilayered structure patterns includes an etch target layer. An insulating material layer is formed over the first multilayered structure patterns and the second multilayered structure patterns. An interlayer insulating layer that fills a space between two adjacent patterns of the first multilayered structure patterns and second multilayered structure patterns is formed by planarizing the insulating material layer. The etch target layer in each of the second multilayered structure patterns is removed.
Abstract:
A switch includes a first electrode layer, a second electrode layer disposed over the first electrode layer, and a selecting element layer interposed between the first electrode layer and the second electrode layer. The selecting element layer includes a gas region in which a current flows or does not flow according to a voltage applied to the switch. When the current flows, the switch is in an on-state, and, when the current does not flow, the switch is in an off-state.
Abstract:
An electronic device may include a semiconductor memory, and the semiconductor memory may include a magnetic tunnel junction (MTJ) structure including a free layer, a pinned layer, and a tunnel barrier layer, the free layer having a variable magnetization direction, the pinned layer having a fixed magnetization direction, the tunnel barrier layer being interposed between the free layer and the pinned layer; and a thermal stability enhanced layer (TSEL) including a homogeneous material having an Fe—O bond.
Abstract:
A method for forming a semiconductor device is disclosed. The method for forming the semiconductor device includes forming a first sacrificial film over a target layer to be etched, forming a first partition mask over the first sacrificial film, forming a first sacrificial film pattern by etching the first sacrificial film using the first partition mask, forming a first spacer at a sidewall of the first sacrificial film pattern, and forming a first spacer pattern by removing the first sacrificial film pattern. The first partition mask includes a plurality of first line-shaped space patterns extending in a first direction. A width of at least one space pattern located at both edges from among the plurality of first space patterns is smaller than a width of each of other space patterns.
Abstract:
A semiconductor integrated circuit device, a method of manufacturing the same, and a method of driving the same are provided. The device includes a semiconductor substrate, an upper electrode extending from a surface of the semiconductor substrate; a plurality of switching structures extending from both sidewalls of the upper electrode in a direction parallel to the surface of the semiconductor substrate, and a phase-change material layer disposed between the plurality of switching structures and the upper electrode.