Abstract:
A method for making an ablated electrically insulating layer on a semiconductor substrate. A first relatively thin layer of at least an undoped glass or undoped oxide is deposited on a surface of a semiconductor substrate having n-type doping. A first relatively thin semiconductor layer having at least one substance chosen from amorphous semiconductor, nanocrystalline semiconductor, microcrystalline semiconductor, or polycrystalline semiconductor is deposited on the relatively thin layer of at least an undoped glass or undoped oxide. At least a layer of borosilicate glass or borosilicate/undoped glass stack is deposited on the relatively thin semiconductor layer. The at least borosilicate glass or borosilicate/undoped glass stack is selectively ablated with a pulsed laser, and the relatively thin semiconductor layer substantially protects the semiconductor substrate from the pulsed laser.
Abstract:
Methods for improving the light trapping characteristics of crystalline silicon solar cells are provided. In one embodiment, the backside surface of a crystalline silicon solar cell substrate is textured with a pulsed laser beam. The textured backside surface of the crystalline silicon solar cell substrate is then annealed to remove damage from the laser texturization process.
Abstract:
Methods and structures for fabricating photovoltaic back contact solar cells having multi-level metallization using laser via drilling end point detection are provided.