Abstract:
A maskless exposure device includes an exposure head including a digital micro-mirror device, the digital micro-mirror device being configured to scan an exposure beam to a substrate by reflecting a source beam from an exposure source; and a system control part configured to control the digital micro-mirror device by utilizing a graphic data system file. The graphic data system file includes data for a source electrode, a drain electrode and a channel portion between the source electrode and the drain electrode in a plan view. The channel portion includes a first portion extending in a direction perpendicular to a scan direction of the exposure head. A width of the first portion of the channel portion is defined to be a multiple of a pulse event generation of the exposure beam.
Abstract:
A flexible and continuous substrates-conveying sheet has a plurality of to be processed substrates disposed on or in it. A nondestructive transferring unit includes a plurality of first transferring rolls and a plurality of second transferring rolls. The first transferring rolls make contact with a first surface of the substrates-conveying sheet where that surface can have electrostatically-induced charge formed thereon. Each of the first transferring rolls includes a first central portion charged with a positive electric charge and a first outer portion surrounding the first central portion. The second transferring rolls make contact with the first surface of the substrates-conveying sheet. The second transferring rolls are disposed alternately with the first transferring rolls. Each of the second transferring rolls includes a second central portion charged with a negative electric charge and a second outer portion surrounding the second central portion.
Abstract:
In a polarizing liquid crystal panel and a display apparatus including the polarizing liquid crystal panel, the polarizing liquid crystal panel includes a first substrate, a second substrate and a liquid crystal layer. The first substrate includes a plastic substrate, a first electrode on the plastic substrate, and a first alignment layer on the first electrode. The second substrate includes a base substrate which opposes the first substrate, a second electrode on the base substrate, and a second alignment layer on the second electrode. The liquid crystal layer is between the first and second substrates and polarizes a light using an electric field between the first and second electrodes.
Abstract:
Exemplary embodiments of the present invention relate to a photoresist composition and method of forming a color filter using the same. A photoresist composition according to an exemplary embodiment includes about 5% by weight to about 10% by weight of a binder resin, about 5% by weight to about 10% by weight of a monomer, about 1% by weight to about 15% by weight of a photo initiator configured to be activated a light having a peak wavelength from about 400 nm to about 410 nm, about 1% by weight to about 10% by weight of a pigment, about 0.01% by weight to about 1% by weight of a pigment dispersing agent, and a solvent.
Abstract:
A sealing composition and a method of manufacturing a display panel using the sealing composition are disclosed. The sealing composition includes about 10% by weight to about 80% by weight of a denatured epoxy resin having a methacrylate group, about 5% by weight to about 40% by weight of a photo-curing acrylate monomer, about 1% by weight to about 10% by weight of a heat-curing agent, about 1% by weight to about 10% by weight of a photo-polymerization initiator, about 5% by weight to about 50% by weight of a filler, about 1% by weight to about 10% by weight of a flexibility improving agent and about 0.001% by weight to about 8% by weight of an additive.
Abstract:
An exposure apparatus includes a light source, an illuminating member, a projecting member, a stage, an inspecting member, and an information processing member. The light source is configured to provide a light in accordance with a pulse event generation (PEG) representing a period of light radiation. The illuminating member is configured to change the light into point lights. The projecting member is configured to project the point lights according to a photoresist shape extending in various directions. The point lights are projected on the stage. The inspecting member is configured to inspect a photoresist pattern formed by the projected point lights. The information processing member is configured to analyze different photoresist patterns corresponding to different PEGs to select one PEG from the different PEGs. The one PEG being associated with a minimum error in the various directions.
Abstract:
A maskless exposure device includes a plurality of exposure heads, each exposure head including a digital micro-mirror device configured to scan an exposure beam to a substrate, the exposure heads being disposed in staggered first and second rows, a plurality of reflecting members disposed on side surfaces of the exposure heads and having reflecting surfaces parallel with each other, a light emitting part configured to light to the reflecting members, and a light receiving part configured to receive light via the reflecting members.
Abstract:
A maskless exposure device including a light source configured to emit an exposure beam, a light modulation element configured to modulate the exposure beam according to an exposure pattern, a projection optical system configured to transfer a modulated exposure beam to a substrate as a beam spot array, a beam measurement part configured to measure a beam data of the beam spot array, and a compensating mask generator configured to generate a compensating mask by utilizing a measured data of the exposure beam for compensating cumulative illumination, wherein the compensating mask generator is configured to turn off left and right beams of a first selected spot beam selected by the beam data, and then to turn off a second selected spot beam.