Abstract:
In a polarizing liquid crystal panel and a display apparatus including the polarizing liquid crystal panel, the polarizing liquid crystal panel includes a first substrate, a second substrate and a liquid crystal layer. The first substrate includes a plastic substrate, a first electrode on the plastic substrate, and a first alignment layer on the first electrode. The second substrate includes a base substrate which opposes the first substrate, a second electrode on the base substrate, and a second alignment layer on the second electrode. The liquid crystal layer is between the first and second substrates and polarizes a light using an electric field between the first and second electrodes.
Abstract:
A maskless exposure device includes an exposure head including a digital micro-mirror device and an exposure source, the digital micro-mirror device being configured to reflect a source beam outputted from the exposure source to a substrate and a system controller configured to control the digital micro-mirror device by using a graphic data system file. The graphic data system file includes data regarding patterns to be formed on the substrate. A pattern extending in a direction parallel to a scan direction of the exposure head includes a first pattern portion having a first width that is greater than a target width and a second pattern portion alternately disposed with the first pattern portion and having a second width that is less than the target width.
Abstract:
A maskless exposure device includes an exposure head including a digital micro-mirror device, the digital micro-mirror device being configured to scan an exposure beam to a substrate by reflecting a source beam from an exposure source; and a system control part configured to control the digital micro-mirror device by utilizing a graphic data system file. The graphic data system file includes data for a source electrode, a drain electrode and a channel portion between the source electrode and the drain electrode in a plan view. The channel portion includes a first portion extending in a direction perpendicular to a scan direction of the exposure head. A width of the first portion of the channel portion is defined to be a multiple of a pulse event generation of the exposure beam.
Abstract:
A maskless exposure device includes an exposure head including a digital micro-mirror device. The digital micro-mirror device is configured to transmit a source beam applied from an exposure source to a substrate. A system control part is configured to control the digital micro-mirror device by using a graphic data system file. The graphic data system file includes data for forming a source electrode, a drain electrode and a channel portion disposed between the source electrode and the drain electrode. The graphic system file includes data for forming the channel portion extending in a diagonal direction with respect to a scan direction of the exposure head.
Abstract:
A maskless exposure device includes an exposure head including a digital micro-mirror device and an exposure source, the digital micro-mirror device being configured to reflect a source beam outputted from the exposure source to a substrate and a system controller configured to control the digital micro-mirror device by using a graphic data system file. The graphic data system file includes data regarding patterns to be formed on the substrate. A pattern extending in a direction parallel to a scan direction of the exposure head includes a first pattern portion having a first width that is greater than a target width and a second pattern portion alternately disposed with the first pattern portion and having a second width that is less than the target width.
Abstract:
Exemplary embodiments of the present invention relate to a photoresist composition and method of forming a color filter using the same. A photoresist composition according to an exemplary embodiment includes about 5% by weight to about 10% by weight of a binder resin, about 5% by weight to about 10% by weight of a monomer, about 1% by weight to about 15% by weight of a photo initiator configured to be activated a light having a peak wavelength from about 400 nm to about 410 nm, about 1% by weight to about 10% by weight of a pigment, about 0.01% by weight to about 1% by weight of a pigment dispersing agent, and a solvent.
Abstract:
A photosensitive resin composition includes an acid-labile resin of about 5 wt % to about 25 wt %, a monomer of about 5 wt % to about 10 wt %, a photoacid generator of about 5 wt % to about 10 wt %, a photoreaction accelerator of about 1 wt % to about 5 wt %, and a solvent of about 50 wt % to about 84 wt %, wherein the acid-labile resin comprises a repeating unit containing an acid group, and a protecting group configured to protect the repeating unit.
Abstract:
A photosensitive resin composition includes an acid-labile resin of about 5 wt % to about 25 wt %, a monomer of about 5 wt % to about 10 wt %, a photoacid generator of about 5 wt % to about 10 wt %, a photoreaction accelerator of about 1 wt % to about 5 wt %, and a solvent of about 50 wt % to about 84 wt %, wherein the acid-labile resin comprises a repeating unit containing an acid group, and a protecting group configured to protect the repeating unit.
Abstract:
A metal wire etchant including persulfate, a sulfonate, a fluorine compound, an azole-based compound, an organic acid, a nitrate, and a chlorine compound, and a method of making the same.
Abstract:
An exposure apparatus includes a light source, an illuminating member, a projecting member, a stage, an inspecting member, and an information processing member. The light source is configured to provide a light in accordance with a pulse event generation (PEG) representing a period of light radiation. The illuminating member is configured to change the light into point lights. The projecting member is configured to project the point lights according to a photoresist shape extending in various directions. The point lights are projected on the stage. The inspecting member is configured to inspect a photoresist pattern formed by the projected point lights. The information processing member is configured to analyze different photoresist patterns corresponding to different PEGs to select one PEG from the different PEGs. The one PEG being associated with a minimum error in the various directions.