Abstract:
A semiconductor device includes a semiconductor substrate, a conductive pad disposed on the semiconductor substrate, and a pillar pattern disposed on the conductive pad. The semiconductor device further includes a solder seed pattern disposed on the pillar pattern, and a solder portion disposed on the pillar pattern and the solder seed pattern. A first width of the solder seed pattern is less than a second width of a top surface of the pillar pattern.
Abstract:
A semiconductor device including a substrate, an insulating layer on the substrate and including a trench, at least one via structure penetrating the substrate and protruding above a bottom surface of the trench, and a conductive structure surrounding the at least one via structure in the trench may be provided.
Abstract:
The inventive concept provides semiconductor devices having through-vias and methods for fabricating the same. The method may include forming a via-hole opened toward a top surface of a substrate and partially penetrating the substrate, forming a via-insulating layer having a first thickness on a bottom surface of the via-hole and a second thickness smaller than the first thickness on an inner sidewall of the via-hole, forming a through-via in the via-hole which the via-insulating layer is formed in, and recessing a bottom surface of the substrate to expose the through-via. Forming the via-insulating layer may include forming a flowable layer on the substrate, and converting the flowable layer into a first flowable chemical vapor deposition layer having the first thickness on the bottom surface of the via-hole.
Abstract:
The inventive concept provides semiconductor devices having through-vias and methods for fabricating the same. The method may include forming a via-hole opened toward a top surface of a substrate and partially penetrating the substrate, forming a via-insulating layer having a first thickness on a bottom surface of the via-hole and a second thickness smaller than the first thickness on an inner sidewall of the via-hole, forming a through-via in the via-hole which the via-insulating layer is formed in, and recessing a bottom surface of the substrate to expose the through-via. Forming the via-insulating layer may include forming a flowable layer on the substrate, and converting the flowable layer into a first flowable chemical vapor deposition layer having the first thickness on the bottom surface of the via-hole.
Abstract:
The inventive concept provides semiconductor devices having through-vias and methods for fabricating the same. The method may include forming a via-hole opened toward a top surface of a substrate and partially penetrating the substrate, forming a via-insulating layer having a first thickness on a bottom surface of the via-hole and a second thickness smaller than the first thickness on an inner sidewall of the via-hole, forming a through-via in the via-hole which the via-insulating layer is formed in, and recessing a bottom surface of the substrate to expose the through-via. Forming the via-insulating layer may include forming a flowable layer on the substrate, and converting the flowable layer into a first flowable chemical vapor deposition layer having the first thickness on the bottom surface of the via-hole.
Abstract:
A semiconductor package includes a first semiconductor chip on a substrate, a buried solder ball on the substrate and spaced apart from the first semiconductor chip, a first molding layer on the substrate and encapsulating and exposing the first semiconductor chip and the buried solder ball, a second semiconductor chip on the first molding layer and vertically overlapping the buried solder ball and a portion of the first semiconductor chip, and a second molding layer on the first molding layer and covering the second semiconductor chip. The second semiconductor chip is supported on the first semiconductor chip through a dummy solder ball between the first and second semiconductor chips. The second semiconductor chip is connected to the buried solder ball through a signal solder ball between the buried solder ball and the second semiconductor chip.
Abstract:
A semiconductor package includes a chip including a pad; a first insulation pattern on the chip and exposing the pad; a redistribution layer (RDL) on an upper surface of the first insulation pattern and connected to the pad; a second insulation pattern on the upper surface of the first insulation pattern and including an opening exposing a ball land of the RDL and a patterned portion in the opening; an under bump metal (UBM) on upper surfaces of the second insulation pattern and patterned portion and filling the opening, the UBM including a first locking hole exposing an edge of an upper surface of the ball land; and a conductive ball on an upper surface of the UBM and including a first locking portion in the first locking hole. The first locking hole may be about 10% to about 50% of the area of the UBM upper surface.
Abstract:
A semiconductor device includes a peripheral circuit structure including peripheral circuits on a substrate and first bonding pads electrically connected to the peripheral circuits and a cell array structure including memory cells on a semiconductor layer and second bonding pads electrically connected to the memory cells and bonded to the first bonding pads. The cell array structure includes a stacked structure including insulating layers and electrodes, an external connection pad on a surface of the semiconductor layer, a dummy pattern at a same level as the semiconductor layer relative to the substrate, and a photosensitive insulating layer on the semiconductor layer and the dummy pattern. A first thickness of a portion of the photosensitive insulating layer vertically overlapping the external connection pad is greater than a second thickness of another portion of the photosensitive insulating layer vertically overlapping the dummy pattern.
Abstract:
A semiconductor package includes a package substrate, a lower package structure on the package substrate that includes a mold substrate, a semiconductor chip in the mold substrate having chip pads exposed through the mold substrate, spacer chips in the mold substrate and spaced apart from the semiconductor chip, and a redistribution wiring layer on the mold substrate that has redistribution wirings electrically connected to the chip pads, first and second stack structures on the lower package structure spaced apart from each other, each of the first and second stack structures including stacked memory chips, and a molding member covering the lower package structure and the first and second stack structures, wherein the mold substrate includes a first covering portion covering side surfaces of the semiconductor chip and the spacer chips, and a second covering portion covering a lower surface of the semiconductor chip.
Abstract:
A semiconductor device including a substrate, an insulating, layer on the substrate and including a trench, at least one via structure penetrating the substrate and protruding above a bottom surface of the trench, and a conductive structure surrounding the at least one via structure in the trench may be provided.