Abstract:
A semiconductor device includes a first conductive pattern at an upper portion of a first insulating interlayer on a first substrate, a first plurality of conductive nanotubes (CNTs) extending vertically, a second conductive pattern at a lower portion of a second insulating interlayer beneath a second substrate, and a second plurality of CNTs extending vertically. A lower surface of the second insulating interlayer contacts an upper surface of the first insulating interlayer. At least a portion of a sidewall of each of the first plurality of CNTs is covered by the first conductive pattern, and at least a portion of a sidewall of each of the second plurality of CNTs is covered by the second conductive pattern. The first and second conductive patterns vertically face each other, and at least one of the first plurality of CNTs and at least one of the second plurality of CNTs contact each other.
Abstract:
A pad is disposed on a substrate. A bump structure is disposed on the pad and electrically connected to the pad. The bump structure includes a first copper layer and a second copper layer sequentially stacked on the pad and a solder ball on the second copper layer. A first X-ray diffraction (XRD) peak intensity ratio of (111) plane to (200) plane of the first copper layer is greater than a second XRD peak intensity ratio of (111) plane to (200) plane of the second copper layer.
Abstract:
A bevel etching apparatus includes a chuck plate that is configured to receive a substrate, a lower ring surrounding a circumference of the chuck plate, a cover plate on the chuck plate, and an upper ring surrounding a circumference of the cover plate. The lower ring includes a ring base and a protrusion that extends upwardly from an edge of the ring base and surrounds a lower portion of a sidewall of the substrate.
Abstract:
A bevel etching apparatus includes a chuck plate that is configured to receive a substrate, a lower ring surrounding a circumference of the chuck plate, a cover plate on the chuck plate, and an upper ring surrounding a circumference of the cover plate. The lower ring includes a ring base and a protrusion that extends upwardly from an edge of the ring base and surrounds a lower portion of a sidewall of the substrate.
Abstract:
A semiconductor device and a method of manufacturing the same, the device including a through-hole electrode structure extending through a substrate; a redistribution layer on the through-hole electrode structure; and a conductive pad, the conductive pad including a penetrating portion extending through the redistribution layer; and a protrusion portion on the penetrating portion, the protrusion portion protruding from an upper surface of the redistribution layer, wherein a central region of an upper surface of the protrusion portion is flat and not closer to the substrate than an edge region of the upper surface of the protrusion portion.
Abstract:
A method of manufacturing a semiconductor package including forming a photoresist pattern on a first surface of an interposer substrate. The interposer substrate includes an electrode zone and a scribe line zone. The interposer substrate is etched using the photoresist pattern as a mask to form a first opening and a second opening respectively on the electrode zone and the scribe line zone. An insulation layer and a conductive layer are formed on the first surface of the interposer substrate. A width of the second opening is smaller than a width of the first opening. The insulation layer contacts each of the first surface of the interposer substrate, an inner surface of the first opening, and an inner surface of the second opening.
Abstract:
Semiconductor device including through via structure and redistribution structures is provided. The semiconductor device may include internal circuits on a first side of a substrate, a through via structure vertically penetrating the substrate to be electrically connected to one of the internal circuits, a redistribution structure on a second side of the substrate and electrically connected to the through via structure, and an insulating layer between the second side of the substrate and the redistribution structure. The redistribution structure may include a redistribution barrier layer and a redistribution metal layer, and the redistribution barrier layer may extend on a bottom surface of the redistribution metal layer and may partially surround a side of the redistribution metal layer.
Abstract:
A wafer carrier includes a base having a cavity provided at the center of the base and an outer sidewall extending along and away from an edge of the base to define the cavity. The cavity is configured to be filled with an adhesive layer. The wafer carrier is configured to be bonded to a wafer with an adhesive layer in the cavity of base such that the outer sidewall faces and is in contact with an edge of the wafer and the cavity faces a center of the wafer.
Abstract:
A watch phone and a method for handling an incoming call using the watch phone are provided. In the watch phone, a display device includes a touch screen panel and a display, turns off the touch screen panel in a watch mode, turns on the touch screen panel in an idle mode or upon receipt of an incoming call, and displays at least two areas for call connection and call rejection, upon receipt of the incoming call. A single mode selection key selects one of the watch mode and the idle mode. A controller performs control operations so that the touch screen panel is turned off in the watch mode and is turned on in the idle mode or upon receipt of the incoming call, and connects or rejects the incoming call, when the at least two areas for call connection or call rejection, which are displayed upon receipt of the incoming call, are pointed to or dragged to.
Abstract:
A semiconductor device comprises a substrate that including a frontside comprising an active region and a backside opposite to the frontside, an electronic element on the active region, a frontside wiring structure electrically connected to the electronic element on the frontside of the substrate, and a backside wiring structure electrically connected to the electronic element on the backside of the substrate. The backside wiring structure includes a plurality of backside wiring patterns sequentially stacked on the backside of the substrate, and a super via pattern that intersects and extends through at least one layer of the plurality of backside wiring patterns.