Abstract:
A communication method and system for converging a 5th-generation (5G) communication system for supporting higher data rates beyond a 4th-generation (4G) system with a technology for Internet of things (IoT) are provided. The disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services.
Abstract:
A method and an apparatus for transmitting Hybrid Automatic Repeat reQuest (HARQ) Acknowledgement/Negative Acknowledgement (ACK/NACK) are provided. The HARQ ACK/NACK transmission method includes receiving a Physical Downlink Shared Channel (PDSCH) in a subframe of a first cell, identifying an ACK subframe for transmitting HARQ ACK/NACK corresponding to the PDSCH, and transmitting the HARQ ACK/NACK in the identified ACK subframe of a second cell.
Abstract:
A chip bonding apparatus configured to bond chips to a circuit board using induction heating generated by an AC magnetic field may be provided. In particular, the chip bonding apparatus includes at least one stage unit configured to support a circuit board on which a chip is placed, a rotating unit configured to rotatively move the at least one stage unit at a desired angle, and a bonding unit including an induction heating antenna configured to perform induction heating such the chip is bonded to the circuit board.
Abstract:
A method and apparatus of a user equipment (UE) for transmitting and receiving data in a wireless communication system. The UE receives first time division duplex (TDD) uplink-downlink configuration information for a first cell and second TDD uplink-downlink configuration information for a second cell, determines whether a subframe in the first cell is a special subframe and the subframe in the second cell is a downlink subframe according to the first and second TDD uplink-downlink configuration information, and determine, if the subframe in the first cell is the special subframe and the subframe in the second cell is the downlink subframe, not to receive a signal on the second cell in orthogonal frequency division multiplexing (OFDM) symbols that overlaps with at least one of a guard period (GP) or uplink pilot time slot in the first cell.
Abstract:
A communication method and system for converging a 5th-generation (5G) communication system for supporting higher data rates beyond a 4th-generation (4G) system with a technology for Internet of things (IoT) are provided. The disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services.
Abstract:
A Channel Status Information (CSI) transmission method and apparatus of a terminal are provided for use in a wireless communication system. In the wireless communication system supporting carrier aggregation, the terminal transmits the CSIs of component carriers without conflict of their transmission time points, resulting in an improvement of system performance. In a case where the transmission time points are determined to overlap unavoidably, the terminal transmits the CSI as compressed.
Abstract:
Methods and apparatuses are provided for Channel State Information (CSI) feedback. An Uplink (UL) grant is received from a Node B. Information included in the UL grant is identified. If the information is mapped to at least one DownLink (DL) Component Carrier (CC) based on configuration information relating to at least one set including the at least one DL CC, at least one CSI corresponding to the at least one DL CC is generated. The generated at least one CSI is transmitted to the Node B.
Abstract:
The present disclosure relates to a technique for radio link monitoring in a wireless communication system, and to operation procedures of the base station and user equipment and a method for radio link quality evaluation on the basis of the technique. In the method, the user equipment divides the downlink channel bandwidth into multiple frequency ranges, measures channel states for each frequency range, and evaluates the radio link quality based on channel state measurement results. Thereafter, the user equipment sends frequency range quality information to the base station, which may then utilize the same for downlink resource allocation. Hence, it is possible to solve the problem of the existing scheme wherein the user equipment enters the physical layer problem detection state or the radio link failure state although a frequency range usable for service provisioning is present within the downlink channel bandwidth.
Abstract:
A Channel Status Information (CSI) transmission method and apparatus of a terminal are provided for use in a wireless communication system. In the wireless communication system supporting carrier aggregation, the terminal transmits the CSIs of component carriers without conflict of their transmission time points, resulting in an improvement of system performance. In a case where the transmission time points are determined to overlap unavoidably, the terminal transmits the CSI as compressed.
Abstract:
Provided is a method of transmitting control information of a base station in a mobile communication system includes obtaining scheduling information from a terminal; and transmitting at least two control channels through one down link carrier, wherein each control channel corresponds to a different uplink carrier.