Abstract:
A device for generating radiant energy comprising a first electrode, a second electrode spaced apart from said first electrode, a material disposed between and in electrical communication with first and second electrodes, which emits radiant energy upon activation. This material is a rare earth metal oxide or a rare earth metal halide.
Abstract:
A floating gate is inserted into the gate stack of an EEPROM cell. For an N channel EEPROM device, the floating gate is composed of a material having a conduction band edge (or fermi energy in the case of a metal or composite that includes a metal) at least one and preferably several kT electron volts below the conduction band edge of the channel region. The floating gate material thus has a larger electron affinity than the material of the channel region. This allows the insulator separating the floating gate and the channel to be made suitable thin (less than 100 angstroms) to reduce the writing voltage and to increase the number of write cycles that can be done without failure, without having charge stored on the floating gate tunnel back out to the channel region during read operations. For a P channel EEPROM device, the floating gate is composed of a material having a valence band edge (or fermi energy in the case of a metal or a composite that includes a metal) at least one and preferably several kT (eV) above the valence band edge of the channel region.
Abstract:
Unpinned epitaxial metal-oxide-compound semiconductor structures are disclosed and a method of fabricating such structures is described. Epitaxial layers of compound semiconductor are grown by MBE which result in the formation of a smooth surface having a stabilized reconstruction. An elemental semiconductor layer is deposited epitaxially in-situ with the compound semiconductor layer which unpins the surface Fermi level. A layer of insulator material is then deposited on the elemental semiconductor layer by PECVD. In one embodiment, the compound semiconductor is GaAs and the elemental semiconductor is Si. The insulator material is a layer of high quality SiO.sub.2. A metal gate is deposited on the SiO.sub.2 layer to form an MOS device. The epitaxial GaAs layer has a density of states which permits the interface Fermi level to be moved through the entire forbidden energy gap. In another embodiment, the SiO.sub.2 deposition completely consumes the interface Si layer so that the resulting MOS device comprises SiO.sub.2 directly overlying the GaAs layer.
Abstract:
In a semiconductor device, a contact with low resistance to a III-V compound semiconductor substrate was fabricated using refractory materials and small amounts of indium as the contact material. The contact material was formed by depositing Mo, Ge and W with small amounts of In onto doped GaAs wafers. The contact resistance less than 1.0 ohm millimeter was obtained after annealing at 800.degree. C. and the resistance did not increase after subsequent prolonged annealing at 400.degree. C.
Abstract:
In one embodiment there is set forth a method comprising providing a semiconductor structure having an electrode, wherein the providing includes providing a phase transition material region and wherein the method further includes imparting energy to the phase transition material region to induce a phase transition of the phase transition material region. By inducing a phase transition of the phase transition material region, a state of the semiconductor structure can be changed. There is further set forth an apparatus comprising a structure including an electrode and a phase transition material region, wherein the apparatus is operative for imparting energy to the phase transition material region to induce a phase transition of the phase transition material region without the phase transition of the phase transition material region being dependent on electron transport through the phase transition material region.
Abstract:
Mechanical devices having bistable positions are utilized to form switches and memory devices. The devices are actuatable to different positions and may be coupled to a transistor device in various configurations to provide memory devices. Actuation mechanisms include electrostatic methods and heat. In one form, the mechanical device forms a gate for a field effect transistor. In a further form, the device may be a switch that may be coupled to the transistor in various manners to affect its electrical characteristics when on and off. The memory switch in one embodiment comprises side walls formed with tensile or compressive films. A cross point switch is formed from a plurality of intersecting conductive rows and columns of conductors. Actuatable switches are positioned between each intersection of the rows and columns such that each intersection is independently addressable.
Abstract:
A gated metal oxide semiconductor field effect transistor (MOSFET) gain cell is formed with a flow channel for molecule flow. The flow channel is formed under the gate, and between a source and drain of the transistor. The molecule flow modulates a gain of the transistor. Current flowing between the source and drain is representative of charges on the molecules flowing through the flow channel. A plurality of individually addressable gain cells are coupled between chambers containing samples to measure charges on molecules in the samples passing through the gain cells.
Abstract:
A densely packed array of vertical semiconductor devices, having pillars, deep trench capacitors, vertical transistors, and methods of making thereof are disclosed. The pillars act as transistor channels, and may be formed utilizing the application of hybrid resist over a block of semiconductor material. Drain doped regions are formed on the top of each pillar. The source doped regions and the plate doped regions are self-aligned and are created by diffusion in the trenches surrounding the pillars. The array has columns of bitlines and rows of wordlines. The capacitors are formed by isolating n+ polysilicon in trenches separating said pillars. The array is suitable for GBit DRAM applications because the deep trench capacitors do not increase array area. The array may have an open bitline architecture, where the plate region is common to all the storage nodes or a folded architecture with two wordlines that pass through each cell having stacked transistors, where one wordline is active and the other is passing for each cell.
Abstract:
A back-plane for a semiconductor device, includes an oxidized substrate, a metal film formed on the oxidized substrate forming a back-gate, a back-gate oxide formed on the back-gate, and a silicon layer formed on the back-gate oxide.
Abstract:
A light emitting device is disclosed comprising a bottom layer of electrically conductive material. A block of electrically insulating material is disposed on the bottom layer. At least a portion of the block is optically transparent. A top layer of electrically conductive material is disposed on the block. A plurality of discrete nano-crystals of a material selected from the group consisting of Group IV, Group III-V, and Group II-VI is disposed within the block, and are thereby electrically insulated from the top and bottom layers. Also provided are bottom and top electrodes connected to the bottom and top layers, respectively, for applying a voltage therebetween.